Please wait a minute...
金属学报  2015, Vol. 51 Issue (6): 685-692    DOI: 10.11900/0412.1961.2014.00495
  论文 本期目录 | 过刊浏览 |
通过添加POSS颗粒抑制锡基无Pb焊层的晶须生长*
左勇,马立民,刘思涵,舒雨田,郭福()
北京工业大学材料科学与工程学院, 北京 100124
WHISKER MITIGATION FOR Sn-BASED Pb-FREE SOLDERS BY POSS ADDITION
Yong ZUO,Limin MA,Sihan LIU,Yutian SHU,Fu GUO()
College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124
引用本文:

左勇, 马立民, 刘思涵, 舒雨田, 郭福. 通过添加POSS颗粒抑制锡基无Pb焊层的晶须生长*[J]. 金属学报, 2015, 51(6): 685-692.
Yong ZUO, Limin MA, Sihan LIU, Yutian SHU, Fu GUO. WHISKER MITIGATION FOR Sn-BASED Pb-FREE SOLDERS BY POSS ADDITION[J]. Acta Metall Sin, 2015, 51(6): 685-692.

全文: PDF(13942 KB)   HTML
摘要: 

在Sn, Sn-3.0Ag-0.5Cu和Sn42-Bi58钎料中添加具有纳米结构的笼形硅氧烷齐聚物(POSS)作为增强相, 研究了增强相在恒温恒湿(85 ℃, 相对湿度85%)条件下对锡基无Pb焊层晶须生长行为的影响. 结果表明, 在恒温恒湿条件下, 锡基无Pb焊层晶须生长的驱动力是Sn的氧化物生成引起体积膨胀从而对周围焊层产生的压应力; 添加POSS可以有效缓解金属Sn的氧化进程, 抑制Sn的氧化物生成, 从而减缓晶须生长; 在Sn, Sn3.0Ag0.5Cu和Sn58Bi焊层中, Sn焊层晶须生长能力最强, Sn58Bi焊层晶须生长能力最弱.

关键词 无Pb钎料晶须生长硅氧烷齐聚物(POSS)    
Abstract

Whisker growth in Pb-free solder joints is one of the most reliability concerns in electronic industry. Several theories and models were developed to elaborate whisker growth, and many attempts were made to find solutions to solve this issue. Micro alloying, such as introducing Cu, Bi, Ag etc. into solders, is considered to be one of effective method to mitigate whisker growth. However, when alloying with these metal elements, the structure of solders will be changed, therefore the reliability of solders needs to be reevaluated. The purpose of this research is to explore the possibility to mitigate whisker growth by reinforce strategy without destroying the structure of solders. In this study, a novel reinforcement, nano-structured cage-type polyhedral oligomeric silsesquioxane (POSS), was employed and expected to mitigate whisker growth. POSS was added into Sn, Sn3.0Ag0.5Cu and Sn58Bi solders respectively. Whisker growth behaviors of these modified solders under high humidity and temperature environment (85 ℃, 85% relative humidity) were analyzed and discussed. The results indicated that, the driving force of whisker growth was compressive stress generated by the volume expanding of tin oxides. The high humidity and temperature condition facilitated the formation of tin oxides and therefore provided continuous driving force for whisker growth. POSS addition could inhibit oxidation process of metal tin effectively, and reduce the amount of tin oxides formation, consequently whisker growth was mitigated. Among Sn, Sn3.0Ag0.5Cu and Sn58Bi solders, Sn solders was the easiest one to grow whiskers, while Sn58Bi was at the lowest risk to grow whis-kers.

Key wordsPb-free solder    whisker growth    polyhedral oligomeric silsesquioxane (POSS)
    
基金资助:*国家自然科学基金项目51301007, 教育部博士点学科专项科研基金项目20131103120030和北京市自然科学基金项目2144044资助
图1  Sn和Sn+POSS样品在85 ℃, 相对湿度85%条件下时效不同时间后表面形貌的SEM像
图2  Sn和Sn+POSS样品在85 ℃, 相对湿度85%条件下时效不同时间后晶须形貌的SEM像
图3  Sn和Sn+POSS样品在85 ℃, 相对湿度85%条件下时效750 h后横截面显微组织的SEM像
Position O Sn Cu Total
1 69.17 28.56 2.27 100
2 87.71 10.79 1.49 100
3 73.16 22.88 3.96 100
表1  图2中点1~3的EDS分析结果
图4  SAC305和SAC305+POSS样品在85 ℃, 相对湿度85%条件下时效不同时间后表面形貌的SEM像
图5  SAC305和SAC305+POSS样品在85 ℃, 相对湿度85%条件下时效750 h后横截面显微组织的SEM像
图6  Sn58Bi和Sn58Bi+POSS样品在85 ℃, 相对湿度85%条件下时效不同时间后表面形貌的SEM像
图7  Sn58Bi和Sn58Bi+POSS样品在85 ℃, 相对湿度85%条件下时效750 h后横截面显微组织的SEM像
[1] Su C H, Chen H, Lee H Y, Wu A T. Appl Phys Lett, 2011; 99: 131906
[2] Su C H, Chen H, Lee H Y, Liu C Y, Ku C S, Wu A T. J Electron Mater, 2014; 43: 3290
[3] Tu K N, Chen C, Wu A T. J Mater Sci: Mater Electron, 2007; 18: 269
[4] He H W, Xu G C, Guo F. Acta Metall Sin, 2009; 45: 744 (何洪文, 徐广臣, 郭 福. 金属学报, 2009; 45: 744)
[5] Hao H, Shi Y W, Xia Z D, Lei Y P, Guo F, Li X Y. Acta Metall Sin, 2009; 45: 199 (郝 虎, 史耀武, 夏志东, 雷永平, 郭 福, 李晓延. 金属学报, 2009; 45: 199)
[6] Dimitrovska A, Kovacevic R. J Electron Mater, 2009; 38: 2726
[7] Suganuma K, Baated A, Kim K S, Hamasakin K, Nemoto N, Nakagawa T, Yamada T. Acta Mater, 2011; 59: 7255
[8] Horvath B, Shinohara T, Illes B. J Alloys Compd, 2013; 577: 439
[9] Illes B, Horvath B. J Alloys Compd, 2014; 616: 116
[10] Jadhav N, Williams M, Pei F, Stafford G, Chason E. J Electron Mater, 2013; 42: 312
[11] Wu A T, Ding Y C. Microelectron Reliab, 2009; 49: 318
[12] Boettinger W J, Johnson C E, Bendersky L A, Moon K W, Williams M E, Stafford G R. Acta Mater, 2005; 53: 5033
[13] Horvath B, Illes B, Shinohara T, Harsanyi G. Thin Solid Films, 2011; 520: 384
[14] Osenbach J W, Agere S, Allentown P A, DeLucca J M, Potteiger B D, Amin A, Shook R L, Baiocchi F A. IEEE Trans Electron Packag Manuf, 2007; 30: 23
[15] Nakadaira Y, Jeong S, Shim J, Seo J, Min S, Cho T, Kang S, Oh S. Microelectron Reliab, 2008; 48: 83
[16] Kim K S, Yu C H, Yang J M. Thin Solid Films, 2006; 504: 350
[17] Kim K S, Yu C H, Yang J M. Microelectron Reliab, 2006; 46: 1080
[18] Jo J L, Kim K S, Sugahara T, Nagao S, Hamasaki K, Tsujimoto M, Suganuma K. J Mater Sci: Mater Electron, 2013; 24: 3108
[19] Hu C C, Tsai Y D, Lin C C, Lee G L, Chen S W, Lee T C, Wen T C. J Alloys Compd, 2009; 472: 121
[20] Zeng F L, Sun Y, Zhou Y, Li Q K. Trans China Weld Inst, 2010; 31(1): 17 (曾凡林, 孙 毅, 周 玉, 李清坤. 焊接学报, 2010; 31(1): 17)
[21] Zhang R H, Xu G C, Wang X T, Guo F, Lee A, Subramanian K N. J Electron Mater, 2010; 39: 2513
[22] Lee A, Subramanian K N. J Electron Mater, 2005; 34: 1400
[23] Shen J, Peng C F, Yin H G I. J Mater Sci: Mater Electron, 2012; 23: 1640
[1] 周敏波 李勋平 马骁 张新平. Sn-3.5Ag/Cu体系早期界面反应及凝固过冷行为[J]. 金属学报, 2010, 46(5): 569-574.