Please wait a minute...
金属学报  2015, Vol. 51 Issue (6): 724-732    DOI: 10.11900/0412.1961.2014.00492
  论文 本期目录 | 过刊浏览 |
W辐照损伤初期的分子动力学研究*
姚曼1(),崔薇1,王旭东1,徐海譞2,PHILLPOT S R3
1 大连理工大学材料科学与工程学院, 大连 116024
2 Department of Materials Science and Engineering, University of Tennessee, Knoxiville, TN37996, USA
3 Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611, USA
MOLECULAR DYNAMICS SIMULATION OF INITIAL RADIATION DAMAGE IN TUNGSTEN
Man YAO1(),Wei CUI1,Xudong WANG1,Haixuan XU2,S R PHILLPOT3
1 School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024
2 Department of Materials Science and Engineering, University of Tennessee, Knoxiville, TN37996, USA
3 Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611, USA
引用本文:

姚曼, 崔薇, 王旭东, 徐海譞, PHILLPOT S R. W辐照损伤初期的分子动力学研究*[J]. 金属学报, 2015, 51(6): 724-732.
Man YAO, Wei CUI, Xudong WANG, Haixuan XU, S R PHILLPOT. MOLECULAR DYNAMICS SIMULATION OF INITIAL RADIATION DAMAGE IN TUNGSTEN[J]. Acta Metall Sin, 2015, 51(6): 724-732.

全文: PDF(1847 KB)   HTML
摘要: 

运用分子动力学方法, 探究bcc-W在中子辐照初期, 由辐照诱发的缺陷形成和演化的微观过程的原子机制. 选取初始碰撞原子(PKA)能量1.0~25.0 keV, 模拟温度范围100~900 K, 研究W中位移级联产生的缺陷数量及分布, PKA方向和温度对稳定Frenkel pairs数的影响, 缺陷团簇以及W的离位阈能. 结果表明, 若级联诱发的缺陷在峰值阶段呈近球形密集分布, 稳定阶段Frenkel pairs数相对较少, 若缺陷呈非球形相对分散分布, 稳定阶段Frenkel pairs数相对较多; 稳定Frenkel pairs数受PKA方向的影响不大, 且随温度升高有下降趋势; 比较而言, 间隙原子团簇分数比空位团簇分数高, 而空位团簇倾向于形成较大的团簇; W的平均离位阈能受温度影响较小, 并具有一定的各向异性.

关键词 W分子动力学位移级联稳定Frenkel pairs数离位阈能    
Abstract

Tungsten is a candidate material for the first wall and divertor in a tokamak fusion reactor, in which it is required to withstand a high neutron irradiation. The defects created in cascade form the primary state of damage and their subsequent evolution gives rise to important changes in their microstructures and engineering properties. However, the evolution and aggregation of radiation-induced defects in atomic level can not be observed by experiments up till now. In this work, molecular dynamics (MD) method was used to explore the microstructural processes and atomic mechanism of the formation and evolution of defects in the initial stage of radiation in bcc-W. The range of primary knock-on atom (PKA) energies is 1.0~25.0 keV, and simulation temperature range from 100 to 900 K. The number and distribution of defects produced by displacement cascades have been studied; the influence of PKA direction and temperature on the number of steady Frenkel pairs has also been researched; defect clusters and the threshold energy have been simulated. The results showed that for morphology distribution of defects induced in the peak time of cascade, the more intensive the defects are, the less the steady Frenkel pairs numbers are, on the contrary, the more decentralized the defects are, the more the steady Frenkel pairs numbers are; the number of steady Frenkel pairs is insensitive to PKA direction, but has a trend to decline with the temperature elevating; the percentage of interstitial clusters is higher than that of the vacancy clusters, while vacancies tend to form larger clusters; the average threshold energy of W is less affected by temperature and has certain anisotropy. The results of this work can provide data for analyzing the behavior of W material under nuclear environment.

Key wordsW    molecular dynamics (MD)    displacement cascade    steady Frenkel pairs number    displacement threshold energy
    
基金资助:*国家自然科学基金项目21233010和51004012资助
图1  100 K时不同初始碰撞原子(PKA)能量下辐照诱发Frenkel pairs数量随时间的演化曲线
图2  100 K下PKA能量为10.0 keV, PKA沿[135]晶向的级联碰撞中不同时刻Frenkel pairs的分布情况
图3  100 K下PKA能量为20.0 keV时峰值时刻不同形态下的Frenkel pairs的分布情况
图4  稳定Frenkel pairs数随PKA能量变化
图5  级联效率h随PKA能量的变化
PKA direction NFS F
[100] 7.00±0.02 -4.4%
[110] 6.90±0.22 -5.8%
[111] 6.67±0.02 -8.9%
[112] 7.97±0.04 8.9%
[135] 8.07±0.14 10.2%
表1  100 K, EPKA为3.0 keV时不同PKA方向下单晶W中级联碰撞诱发稳定Frenkel pairs数和浮动情况
图6  NFS随温度的变化
图7  100 K下稳定阶段间隙原子团簇分数fcli与空位团簇分数fclv随PKA能量的变化
图8  900 K下PKA能量为15.0 keV时稳定阶段点缺陷(间隙原子和空位)随时间演化
图9  100 K下PKA能量为25.0 keV时团簇大小(每个团簇中包含缺陷的个数)与团簇个数的关系
图10  本工作计算的金属W离位阈能Ed与文献报道的比较
  
[1] Bolt H, Barabash V, Federici G, Linke J, Loarte A, Roth J, Sato K. J Nucl Mater, 2002; 307: 43
[2] Borovikov V, Tang X Z, Perez D, Bai X M, Uberuaga B P, Voter A F. J Phys—Condens Matter, 2013; 25: 035402
[3] Troev T, Nankov N, Yoshiie T. Nucl Instr Meth, 2011; 269B: 566
[4] Rieth M, Dudarev S L, Gonzalez de Vicente S M, Aktaa J, Ahlgren T, Antusch S, Palacios T. J Nucl Mater, 2013; 432: 482
[5] He X F, Yang W, Fan S. Acta Phys Sin, 2009; 58: 8657 (贺新福, 杨 文, 樊 胜. 物理学报, 2009; 58: 8657)
[6] Guinan M W, Kinney J H. J Nucl Mater, 1981; 103-104: 1319
[7] Xu Q, Yoshiie T, Huang H C. Nucl Instr Meth, 2003; 206B: 123
[8] Li M, Cui J C, Wang J, Hou Q. J Nucl Mater, 2013; 433: 17
[9] Caturla M J, Diaz de la Rubia T, Victoria M, Corzine R K, James M R, Greene G A. J Nucl Mater, 2001; 296: 90
[10] Troev T, Popov E, Staikov P, Nankov N, Yoshiie T. Nucl Instr Meth, 2009; 267B: 535
[11] Park N Y, Kim Y C, Seok H K, Han S H, Cho S, Cha P R. Nucl Instr Meth, 2007; 265B: 47
[12] Fu B Q, Xu B, Lai W S, Yuan Y, Xu H Y, Li C, Jia Y Z, Liu W. J Nucl Mater, 2013; 441: 24
[13] Biersack J P, Ziegler J F. Nucl Instrum Methods Phys Res, 1982; 194: 93
[14] Lee B J, Baskes M I, Kim H, Yang K C. Phys Rev, 2001; 64B: 184102
[15] Yao M, Gao X, Zeng W P, Wang X D, Xu H X, Phillpot S R. Acta Metall Sin, 2013; 49: 530 (姚 曼, 高 晓, 曾维鹏, 王旭东, 徐海譞, Phillpot S R. 金属学报, 2013; 49: 530)
[16] Xu H X. From Electronic Structure of Point Defects to Physical Properties of Complex Materials Using Atomic-level Simulations. Gainesville: University of Florida, 2010: 148
[17] Bacon D J, Calder A F, Gao F, Kapinos V G, Wooding S J. Nucl Instr Meth, 1995; 102B: 37
[18] Norgett M J, Robinson M T, Torrens I M. Nucl Eng Des, 1975; 33: 50
[19] Bj?rkas C, Nordlund K, Dudarev S. Nucl Instr Meth, 2009; 267B: 3204
[20] Bacon D J, Gao F, Osetsky Y N. J Nucl Mater, 2000; 276: 1
[21] Wooding S J, Bacon D J, Phythian W J. Philos Mag, 1995; 72A: 1261
[22] Fikar J, Schaeublin R. Nucl Instr Meth, 2007; 255B: 27
[23] Gao F, Bacon D J, Flewitt P E J, Lewis T A. J Nucl Mater, 1997; 249: 77
[24] Derlet P M, Nguyen-Manh D, Dudarev S L. Phys Rev, 2007; 76B: 054107
[25] Fikar J, Schaeublin R. J Nucl Mater, 2009; 386-388: 97
[26] Nguyen-Manh D, Horsfield A P, Dudarev S L. Phys Rev, 2006; 73B: 020101
[27] Bai X M, Voter A F, Hoagland R G, Nastasi M, Uberuaga B P. Science, 2010; 327: 1631
[28] Vajda P, Biget M, Lucasson A, Lucasson P. J Phys, 1977; 7F: L123
[29] Maury F, Biget M, Vajda P, Lucasson A, Lucasson P. Radiat Eff Defects Solids, 1978; 38: 53
[30] Sigle W, Seeger A. Phys Status Solidi, 1994; 146A: 57
[31] Zepeda-Ruiz L A, Han S, Srolovitz D J, Car R, Wirth B D. Phys Rev, 2003; 67B: 134114
[32] King W E, Benedek R. Phys Rev, 1981; 23B: 6335
[1] 白佳铭, 刘建涛, 贾建, 张义文. WTa型粉末高温合金的蠕变性能及溶质原子偏聚[J]. 金属学报, 2023, 59(9): 1230-1242.
[2] 刘伟, 陈婉琦, 马梦晗, 李恺伦. 聚变堆用W在等离子体作用下的辐照损伤行为研究进展[J]. 金属学报, 2023, 59(8): 986-1000.
[3] 司永礼, 薛金涛, 王幸福, 梁驹华, 史子木, 韩福生. Cr添加对孪生诱发塑性钢腐蚀行为的影响[J]. 金属学报, 2023, 59(7): 905-914.
[4] 王寒玉, 李彩, 赵璨, 曾涛, 王祖敏, 黄远. 基于纳米活性结构的不互溶W-Cu体系直接合金化及其热力学机制[J]. 金属学报, 2023, 59(5): 679-692.
[5] 李小兵, 潜坤, 舒磊, 张孟殊, 张金虎, 陈波, 刘奎. W含量对Ti-42Al-5Mn-xW合金相转变行为的影响[J]. 金属学报, 2023, 59(10): 1401-1410.
[6] 刘帅帅, 侯超楠, 王恩刚, 贾鹏. Zr61Cu25Al12Ti2Zr52.5Cu17.9Ni14.6Al10Ti5 块体非晶合金过冷液相区的塑性流变行为[J]. 金属学报, 2022, 58(6): 807-815.
[7] 皇甫顥, 王子龙, 刘永利, 孟凡顺, 宋久鹏, 祁阳. W1 - x Ir x 固溶合金几何结构、电子结构、力学和热力学性能的第一性原理计算[J]. 金属学报, 2022, 58(2): 231-240.
[8] 李海勇, 李赛毅. Al <111>对称倾斜晶界迁移行为温度相关性的分子动力学研究[J]. 金属学报, 2022, 58(2): 250-256.
[9] 彭俊, 金鑫焱, 钟勇, 王利. 基板表层组织对Fe-16Mn-0.7C-1.5Al TWIP钢可镀性的影响[J]. 金属学报, 2022, 58(12): 1600-1610.
[10] 胡晨, 潘帅, 黄明欣. 高强高韧异质结构温轧TWIP[J]. 金属学报, 2022, 58(11): 1519-1526.
[11] 张旭, 田谨, 薛敏涛, 江峰, 李苏植, 张博召, 丁俊, 李小平, 马恩, 丁向东, 孙军. 2000℃高温高承载的Ta-W难熔合金[J]. 金属学报, 2022, 58(10): 1253-1260.
[12] 王文权, 杜明, 张新戈, 耿铭章. H13钢表面电火花沉积WC-Ni基金属陶瓷涂层微观组织及摩擦磨损性能[J]. 金属学报, 2021, 57(8): 1048-1056.
[13] 韩颖, 王宏双, 曹云东, 安跃军, 谈国旗, 李述军, 刘增乾, 张哲峰. 微观定向结构Cu-W复合材料的力学与电学性能[J]. 金属学报, 2021, 57(8): 1009-1016.
[14] 易晓鸥, 韩文妥, 刘平平, FERRONIFrancesco, 詹倩, 万发荣. 金属W中辐照缺陷的产生、演化与热回复机制[J]. 金属学报, 2021, 57(3): 257-271.
[15] 朱玉平, 盛乃成, 谢君, 王振江, 荀淑玲, 于金江, 李金国, 杨林, 侯桂臣, 周亦胄, 孙晓峰. 高钨镍基高温合金K416BW相的析出行为[J]. 金属学报, 2021, 57(2): 215-223.