Please wait a minute...
金属学报  2015, Vol. 51 Issue (4): 465-472    DOI: 10.11900/0412.1961.2014.00485
  本期目录 | 过刊浏览 |
微量添加Sn和Nb对Zr-Cu-Fe-Al块体非晶合金热稳定性和塑性的影响
杨滨1,2(), 李鑫1, 罗文东1, 李宇翔1
1 北京科技大学新金属材料国家重点实验室, 北京100083
2 北京科技大学钢铁共性技术协同创新中心, 北京100083
EFFECT OF MINOR Sn AND Nb ADDITIONS ON THE THERMAL STABILITY AND COMPRESSIVE PLASTICITY OF Zr-Cu-Fe-Al BULK METALLIC GLASS
YANG Bin1,2(), LI Xin1, LUO Wendong1, LI Yuxiang1
1 State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083
2 Collaborative Innovation Center of Universal Iron & Steel Technology, University of Science and Technology Beijing, Beijing 100083
引用本文:

杨滨, 李鑫, 罗文东, 李宇翔. 微量添加Sn和Nb对Zr-Cu-Fe-Al块体非晶合金热稳定性和塑性的影响[J]. 金属学报, 2015, 51(4): 465-472.
Bin YANG, Xin LI, Wendong LUO, Yuxiang LI. EFFECT OF MINOR Sn AND Nb ADDITIONS ON THE THERMAL STABILITY AND COMPRESSIVE PLASTICITY OF Zr-Cu-Fe-Al BULK METALLIC GLASS[J]. Acta Metall Sin, 2015, 51(4): 465-472.

全文: PDF(4851 KB)   HTML
摘要: 

采用Cu模铸造方法制备了直径2和3 mm的Zr61.5Cu21.5-xFe5Al11Sn1Nbx (x=0, 1, 2, 原子分数, %)和Zr61.5Cu21.5Fe5Al12非晶合金棒. 结果表明, Sn和Nb微合金化略微降低了Zr-Cu-Fe-Al非晶合金的玻璃形成能力. Zr61.5Cu19.5Fe5Al11Sn1Nb2非晶合金具有优异的压缩塑性, 并且表现出“应变硬化”现象. 高分辨透射电镜观察显示Zr61.5Cu19.5Fe5Al11Sn1Nb2和Zr61.5Cu21.5Fe5Al12合金均为完全非晶态, Sn和Nb微合金化后合金内部原子排列更紧密. 正电子湮没谱分析结果表明, 与Zr61.5Cu21.5Fe5Al12非晶合金相比, Zr61.5Cu19.5Fe5Al11Sn1Nb2非晶合金内部原子密排间隙和结构自由体积尺寸减小、总量增加. 大量弥散分布的自由体积有利于Zr61.5Cu19.5Fe5Al11Sn1Nb2非晶合金剪切带的形成、分枝和相互作用, 最终改善了非晶合金的塑性.

关键词 Sn和Nb微合金化Zr-Cu-Fe-Al块体非晶热稳定性塑性    
Abstract

New Ni-free Zr61.5Cu21.5-xFe5Al11Sn1Nbx (x=0,1, 2, atomic fraction, %) and Zr61.5Cu21.5Fe5Al12 bulk metallic glasses (BMGs) rods with diameters of 2 and 3 mm were fabricated by copper mold casting. In order to improve the plasticity of the Zr61.5Cu21.5Fe5Al12 BMG, minor Sn and Nb with lower thermal neutron cross-sections was added into the Zr-Cu-Fe-Al alloy. The experimental results showed that the glass-forming abilities of the BMGs with Sn and Nb elements were reduced slightly. Among them with Sn and Nb elements, however, Zr61.5Cu19.5Fe5Al11Sn1Nb2 BMG exhibits high compressive strength, high ductility together with extensive “work hardening”. HRTEM study verifies the glassy states of both Zr61.5Cu19.5Fe5Al11Sn1Nb2 and Zr61.5Cu21.5Fe5Al12 alloys samples. The difference between the microstructures of the BMGs samples with and without Sn and Nb elements is that the atomic arrangement in Zr61.5Cu19.5Fe5Al11Sn1Nb2 BMG is more closely than that in Zr61.5Cu21.5Fe5Al12 BMG. Positron annihilation lifetime spectroscopy study showed further that the Zr61.5Cu19.5Fe5Al11Sn1Nb2 BMG has more closely atomic arrangement than the Zr61.5Cu21.5Fe5Al12 BMG. The structural free-volume size of the former BMG is smaller than that of the latter BMG. And the total free-volume amount of the former BMG is obviously higher than that of the latter BMG. Uniformly distributed free volume is beneficial to improve the shear band formation, branching, and interactions of the Zr61.5Cu19.5Fe5Al11Sn1Nb2 BMG, which increases finally the compressive ductility of the BMG.

Key wordsminor Sn and Nb additions    Zr-Cu-Fe-Al bulk metallic glass    thermal stability    plasticity
    
ZTFLH:  TG113.2  
基金资助:*北京市自然科学基金项目2122039, 长江学者和创新团队发展计划和北京科技大学新金属材料国家重点实验室自主课题项目资助
作者简介: null

杨 滨, 男, 1960年生, 教授

图1  Zr61.5Cu21.5-xFe5Al11Sn1Nbx (x=0,1, 2, 原子分数, %)与Zr61.5Cu21.5Fe5Al12 (Z1)非晶合金的XRD谱
图2  Zr61.5Cu19.5Fe5Al11Sn1Nb2 (Z2)和Z1非晶合金的DSC曲线
Alloy Tg
K
Tx1
K
Tx2
K
DTx
K
Tl
K
Tg /Tl Tm
K
g sa
b
Z2 662 744 800 82 1173 0.564 1138 0.405 0.980
Z1 664 756 92 1173 0.566 1139 0.412 1.026
表1  Z2和 Z1非晶合金的热力学参数及热中子吸收截面数据
图3  Z2非晶合金在不同升温速率下的DSC曲线
Alloy Eg Ex1 Ep1 Ep2
Z2 253.8 269.4 281.0 201.2
Z1 255.2 274.9 285.7 -
表2  Z2和Z1[10]非晶合金的表观激活能
图4  Z2非晶合金的玻璃转变温度Tg, 第一晶化峰温度Tp1, 第二晶化峰温度Tp2和晶化温度Tx的Kissinger曲线
图5  Z2和 Z1非晶合金在4×10-4 s-1应变速率下的压缩工程应力-应变曲线
Alloy E / GPa sy / MPa ey / % smax / MPa ef / %
Z2 85 1851 2.42 >2532 >30
Z1 91 1885 2.25 1930 2.39
表3  Z2和Z1非晶合金室温压缩力学性能
图6  Z2和Z1非晶合金HRTEM像和相应的SAED花样以及反Fourier变化图像
图7  Z2和Z1非晶合金压缩试样断口的SEM像
图8  Z2和Z1非晶合金的DSC曲线及玻璃转变温度附近的放大图
Alloy t1 / ps I1 / % t2 / ps I2 / % t3 / ps I3 / % Fit factor
Z2 110.7 25.5 184.4 73.4 1984.0 1.07 1.0054
Z1 141.0 42.9 201.0 56.0 2018.0 1.15 0.9927
表4  Z2和Z1非晶合金正电子湮没三寿命谱拟合结果
Alloy tm / ps Im / % tv / ps Iv / % Fit factor
Z2 168.3 98.77 1686.0 1.23 1.0907
Z1 176.4 98.68 1736.0 1.31 1.0475
表5  Z2与Z1非晶合金正电子湮没二寿命谱拟合结果
[1] Zhang Q S, Zhang W, Inoue A. Scr Mater, 2009; 61: 241
[2] Inoue A, Zhang Q S, Zhang W, Yubuta K, Son K S, Wang X M. Mater Trans, 2009; 50: 388
[3] Wang W H. Prog Mater Sci, 2012; 57: 487
[4] Jiang Q K, Wang X D, Nie X P, Zhang G Q, Ma H, Fecht H J, Bendnarcik J, Franz H, Liu Y G, Can Q P, Jiang J Z. Acta Mater, 2008; 56: 1785
[5] Zhang Q S, Zhang W, Inoue A. Mater Trans, 2008; 49: 2743
[6] Johnson W L. MRS Bull, 1999; 24: 42
[7] Liu J Z. Nuclear Structural Materials. Beijing: Chemical Industry Press, 2007: 162
[7] (刘建章. 核结构材料. 北京: 化学工业出版社, 2007: 162)
[8] Chen H M,Ma C L,Bai X D. Corrosion and Protection of Nuclear Reactor Materials. Beijing: Atomic Energy Press, 1984: 222
[8] (陈鹤鸣,马春来,白新德. 核反应堆材料腐蚀及其防护. 北京: 原子能出版社, 1984: 222)
[9] Luo W D, Yang B, Chen G L. Scr Mater, 2011; 64: 625
[10] Luo W D. Master Thesis, University of Science and Technology Beijing, 2010
[10] (罗文东. 北京科技大学硕士学位论文, 2010)
[11] Wu X F, Zhang H F, Qiu K Q, Yang H C, Hu Z Q. Acta Metall Sin, 2003; 39: 555
[11] (武晓峰, 张海峰, 邱克强, 杨洪才, 胡壮麒, 金属学报, 2003; 39: 555)
[12] Liu Y H, Wang G, Pan M X, Wang W H. Science, 2007; 315: 1385
[13] Wang W H. Prog Sci, 2013; 33: 177
[13] (汪卫华. 物理学进展, 2013; 33: 177)
[14] Kondo R, Nomura S N, Tsutsumi Doi Y H, Hanawa T. Acta Biomater, 2011; 7: 4278
[15] Zhou F Y, Wang B L, Qiu K J, Lin W J, Li L, Wang Y B, Nie F L, Zheng Y F. Mater Sci Eng, 2012; C32: 851
[16] Wei J, Frankel P, Polatidis Blat E M, Ambard A, Comstock R J, Hallstadius L, Hudson D, Smith G D W, Grovenor C R M, Klaus M, Cottis R A, Lyon Preuss S M. Acta Mater, 2013; 61: 4200
[17] Inoue A. Proc Jpn Acad, 1997; 73B: 19
[18] Inoue A. Bulk Amorphous Alloys: Preparation and Fundamental Characteristics. Uetikon-Zurich: Trans Tech Publications, 1998: 3
[19] Suryanarayana C,Inoue A. Bulk Metallic Glass. New York: CRC Press, 2011: 67
[20] Chen H, He Y, Shiftlet G J, Poon S J. Nature, 1994; 367: 541
[21] Das J, Tang M B, Kim K B, Theissmann R, Baier F, Wang W H, Eckert J. Phys Rev Lett, 2005; 94: 205501
[22] Chen L Y, Fu Z D, Zhang G Q, Hao X P, Jiang Q, Wang X D, Cao Q P, Franz H, Liu Y G, Xie H S, Zhang S L, Wang B Y, Zeng Y W, Jiang J Z. Phys Rev Lett, 2008; 100: 075501
[23] Hui X, Liu S N, Pang S J, Zhuo L C, Zhang T, Chen G L, Liu Z K. Scr Mater, 2010; 63: 239
[24] Van den Beukel A, Sietsma J. Acta Metall Mater, 1990; 38: 383
[25] Slipenyuk A, Eckert J. Scr Mater, 2004; 50: 39
[26] Daniel B S S, Reger-Leonhard A, Heilmaier M, Eckert J, Schultz L. Mech Time-Depend Mater, 2002; 6: 193
[27] Flores K M, Sherer E, Bharathula A, Chen H, Jean Y C. Acta Mater, 2007; 55: 3403
[28] Li Y X. Master Thesis, University of Science and Technology Beijing, 2011
[28] (李宇翔. 北京科技大学硕士学位论文, 2011)
[1] 徐永生, 张卫刚, 徐凌超, 但文蛟. 铁素体晶间变形协调与硬化行为模拟研究[J]. 金属学报, 2023, 59(8): 1042-1050.
[2] 张海峰, 闫海乐, 方烽, 贾楠. FeMnCoCrNi高熵合金双晶微柱变形机制的分子动力学模拟[J]. 金属学报, 2023, 59(8): 1051-1064.
[3] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[4] 张禄, 余志伟, 张磊成, 江荣, 宋迎东. GH4169高温合金热机械疲劳循环损伤机理及数值模拟[J]. 金属学报, 2023, 59(7): 871-883.
[5] 冯艾寒, 陈强, 王剑, 王皞, 曲寿江, 陈道伦. 低密度Ti2AlNb基合金热轧板微观组织的热稳定性[J]. 金属学报, 2023, 59(6): 777-786.
[6] 万涛, 程钊, 卢磊. 组元占比对层状纳米孪晶Cu力学行为的影响[J]. 金属学报, 2023, 59(4): 567-576.
[7] 张哲峰, 李克强, 蔡拓, 李鹏, 张振军, 刘睿, 杨金波, 张鹏. 层错能对面心立方金属形变机制与力学性能的影响[J]. 金属学报, 2023, 59(4): 467-477.
[8] 郑士建, 闫哲, 孔祥飞, 张瑞丰. 纳米金属层状材料强塑性的界面调控[J]. 金属学报, 2022, 58(6): 709-725.
[9] 张新房, 向思奇, 易坤, 郭敬东. 脉冲电流调控金属固体中的残余应力[J]. 金属学报, 2022, 58(5): 581-598.
[10] 李民, 李昊泽, 王继杰, 马颖澈, 刘奎. 稀土Ce对薄带连铸无取向6.5%Si钢组织、高温拉伸性能和断裂模式的影响[J]. 金属学报, 2022, 58(5): 637-648.
[11] 高钰璧, 丁雨田, 李海峰, 董洪标, 张瑞尧, 李军, 罗全顺. 变形速率对GH3625合金弹-塑性变形行为的影响[J]. 金属学报, 2022, 58(5): 695-708.
[12] 郭祥如, 申俊杰. 孪生诱发软化与强化效应的Cu晶体塑性行为模拟[J]. 金属学报, 2022, 58(3): 375-384.
[13] 任少飞, 张健杨, 张新房, 孙明月, 徐斌, 崔传勇. 新型Ni-Co基高温合金塑性变形连接中界面组织演化及愈合机制[J]. 金属学报, 2022, 58(2): 129-140.
[14] 郭昊函, 杨杰, 刘芳, 卢荣生. GH4169合金拘束相关的疲劳裂纹萌生寿命[J]. 金属学报, 2022, 58(12): 1633-1644.
[15] 武晓雷, 朱运田. 异构金属材料及其塑性变形与应变硬化[J]. 金属学报, 2022, 58(11): 1349-1359.