Please wait a minute...
金属学报  2015, Vol. 51 Issue (6): 762-768    DOI: 10.11900/0412.1961.2014.00473
  论文 本期目录 | 过刊浏览 |
La0.9Ce0.1Fe11.44Si1.56Hy合金及其粉末粘结块体的磁热效应*
慕利娟1,2,3,黄焦宏3(),刘翠兰3,程娟3,孙乃坤4,赵增祺3
1 内蒙古工业大学材料科学与工程学院, 呼和浩特 010051
2 内蒙古科技大学数理与生物工程学院, 包头 014010
3 包头稀土研究院, 包头 014030
4 沈阳理工大学理学院, 沈阳 110159
MAGNETOCALORIC EFFECT OF La0.9Ce0.1Fe11.44Si1.56Hy ALLOY AND POWER BONDED BLOCK
Lijuan MU1,2,3,Jiaohong HUANG3(),Cuilan LIU3,Juan CHENG3,Naikun SUN4,Zengqi ZHAO3
1 School of Materials Science and Engineering, Inner Mongolia University of Technology, Hohhot 010051
2 School of Mathematics, Physics and Biological Engineering, Inner Mongolia University of Science and Technology, Baotou 014010
3 Baotou Research Institute of Rare Earth, Baotou 014030
4 School of Science, Shenyang Ligong University, Shenyang 110159
引用本文:

慕利娟, 黄焦宏, 刘翠兰, 程娟, 孙乃坤, 赵增祺. La0.9Ce0.1Fe11.44Si1.56Hy合金及其粉末粘结块体的磁热效应*[J]. 金属学报, 2015, 51(6): 762-768.
Lijuan MU, Jiaohong HUANG, Cuilan LIU, Juan CHENG, Naikun SUN, Zengqi ZHAO. MAGNETOCALORIC EFFECT OF La0.9Ce0.1Fe11.44Si1.56Hy ALLOY AND POWER BONDED BLOCK[J]. Acta Metall Sin, 2015, 51(6): 762-768.

全文: PDF(844 KB)   HTML
摘要: 

对La0.9Ce0.1Fe11.44Si1.56合金进行饱和吸氢, 之后在不同放氢温度(Td=200~250 ℃)下进行3 h放氢处理, 得到H含量不同即具有不同Curie温度(TC)的氢化物, 对其相结构和磁热效应进行测试分析. 结果表明, 合金在吸氢前后有相同的相结构, 主相为NaZn13型立方结构, 同时含有少量a-Fe杂相; 随着放氢温度的提高, TC近似线性的降低; 由于H原子的引入消弱了一级巡游电子变磁(IEM)转变, 等温磁熵变较母合金有所降低, 当Td>230 ℃时, 磁熵变随着放氢温度的升高明显降低, 磁滞减小, 当Td=250 ℃时, 磁熵变曲线宽化, 一级相变特性弱化. 饱和吸氢后的La0.9Ce0.1Fe11.44Si1.56Hy粉末经固化后得到的粘结样品在0~1.5 T的磁场下, 绝热温变和等温磁熵变的最大值分别达到2.7 K和7.5 J/(kgK).

关键词 La0.9Ce0.1Fe11.44Si1.56Hy吸氢放氢粉末粘结磁热效应    
Abstract

Recently, La(Fe, Si)13-based magnetic refrigeration materials have been widely explored due to the advantages of giant magnetocaloric effect (MCE), tunable Curie temperature (TC), low cost of raw materials and excluding deleterious elements compared to other room-temperature giant MCE materials such as Gd5(Ge1-xSix)4, MnFeP0.45As0.55 and MnAs based compounds. In this work, in order to shift the TC to around room temperature and maintain the large MCE, the method of absorbing hydrogen was employed. La0.9Ce0.1Fe11.44Si1.56 hydride was prepared by saturated hydrogen absorption and then hydrogen contents and TC of the hydrides were controlled by subsequent dehydrogenation at different temperatures (Td=200~250 ℃ for 3 h). The phase structure and magnetocaloric effect were investigated. The results show that the samples possess the cubic NaZn13-type structure with a small amount of a-Fe as impurity phase. TC exhibits an approximately linear decrease with increasing the dehydrogenation temperature. The isothermal magnetic entropy change (ΔSm) of the hydrides decreases compared with the parent compound, which is mainly attributed to the fact that the field-induced itinerant-electron metamagnetic transition has been weakened upon hydrogen absorption. For the sample desorbed hydrogen at temperatures above 230 ℃, ΔSm is remarkably decreased and favorably the magnetic hysteresis loss has been reduced simultaneously. With further increasing the temperature to 250 ℃, ΔSm curve is broadened, weakening the characteristic of the first-order phase transition. Due to the intrinsic brittleness of hydrides, the preparation of a certain shape is of great importance for practical application. For a magnetic field change of 1.5 T, the maximum adiabatic temperature change (ΔTad) and ΔSm for the bonded block of fully hydrogen absorption La0.9Ce0.1Fe11.44Si1.56 hydride are about 2.7 K and 7.5 J/(kgK), respectively, which are larger than those of La(Fe, Co, Si)13 materials in the same magnetic field change range. In conclusion, the bonded La0.9Ce0.1Fe11.44Si1.56 hydrides with good MCE and different TC have been successfully prepared and will be very useful for the practical application of layered magnetic refrigerants at ambient temperature under low field change in magnetic refrigerators.

Key wordsLa0.9Ce0.1Fe11.44Si1.56Hy    hydrogen absorption    dehydrogenation    power bond    magnetocaloric effect
收稿日期: 2015-01-15     
基金资助:*国家自然科学基金项目51261001和辽宁省自然科学基金项目2013020105资助
图1  La0.9Ce0.1Fe11.44Si1.56合金及其氢化物的室温XRD谱
图2  La0.9Ce0.1Fe11.44Si1.56Hy的热重(TG)曲线
图3  La0.9Ce0.1Fe11.44Si1.56合金及其氢化物的热磁和等温磁熵变曲线
图4  La0.9Ce0.1Fe11.44Si1.56Hy在不同温度放氢3 h的热磁曲线与Curie温度TC和放氢温度Td之间的关系
图5  La0.9Ce0.1Fe11.44Si1.56Hy在200 ℃放氢3 h的等温磁化和Arrott曲线
图6  La0.9Ce0.1Fe11.44Si1.56Hy在250 ℃放氢3 h的等温磁化和Arrott曲线
图7  La0.9Ce0.1Fe11.44Si1.56Hy在不同温度放氢3 h的等温磁熵变曲线
图8  粘结La0.9Ce0.1Fe11.44Si1.56Hy的绝热温变和等温磁熵变曲线
[1] Pecharsky V K, Gschneidner Jr K A. Phys Rev Lett, 1997; 78: 4494
[2] Hu F X, Shen B G, Sun J R, Cheng Z H, Rao G H, Zhang X X. Appl Phys Lett, 2001; 78: 3675
[3] Fujieda S, Fujita A, Fukamichi K. Appl Phys Lett, 2002; 81: 1276
[4] Tegus O, Brück E, Buschow K H J, de Boer F R. Nature, 2002; 415: 150
[5] Zhang M, Liu D M, Liu C X, Huang Q Z, Wang S B, Zhang H, Yue M. Acta Metall Sin, 2013; 49: 783 (张孟, 刘丹敏, 刘翠秀, 黄清镇, 王少博, 张虎, 岳明. 金属学报, 2013; 49: 783)
[6] Dung N H, Ou Z Q, Caron L, Zhang L, Cam Thanh D T, de Wijs G A, de Groot R A, Buschow K H J, Brück E. Adv Energy Mater, 2011; 1: 1215
[7] Krenke T, Duman E, Acet M, Wassermann E F, Moya X, Manosa L, Planes A. Nat Mater, 2005; 4: 450
[8] Shen J, Li Y X, Sun J R, Shen B G. Chin Phys, 2009; 18B: 2058
[9] Balli M, Fruchart D, Gignoux D. J Phys: Condens Matter, 2007; 19: 236230
[10] Cheng J, Liu G D, Huang J H, Liu C L, Jin P Y, Yan H W. J Rare Earths, 2013; 31: 1163
[11] Li F A, Song L, Bao L H, Hasi C L, Tegus O, Huang J H. Acta Metall Sin, 2008; 44: 371 (李福安, 松 林, 包黎红, 哈斯朝鲁, 特古斯, 黄焦宏. 金属学报, 2008; 44: 371)
[12] Chen Y F, Wang F, Shen B G, Hu F X, Cheng Z H, Wang G J, Sun J R. Chin Phys, 2002; 11: 741
[13] Fujita A, Fujieda S, Fukamichi K, Yamazaki Y, Iijima Y. Mater Trans, 2002; 43: 1202
[14] Fujita A, Fukamichi K. J Alloys Compd, 2005; 404: 554
[15] Barcza A, Katter M, Zellmann V, Russek S, Jacobs S, Zimm C. IEEE Trans Magn, 2011; 47: 3391
[16] Krautz M, Moore J D, Skokov K P, Liu J, Teixeira C S, Schafer R, Schultz L, Gutfleisch O. J Appl Phys, 2012; 112: 083918
[17] Zimm C, Jacobs S. J Appl Phys, 2013; 113: 17A908
[18] Legait U, Guillou F, Kedous-Lebouc A, Hardy V, Almanza M. Int J Refrigeration, 2014; 37: 147
[19] Balli M, Sari O, Mahmed C, Besson C, Bonhote P, Duc D, Forchelet J. In: Egolf P W, ed., 4th IIF-IIR Int Conf on Magnetic Refrigeration at Room Temperature, Paris: Institute of Refrigeraton and Institut International du Froid of France, 2010: 313
[20] Tusek J, Kitanovski A, Tomc U, Favero C, Poredos A. Int J Refrigeration, 2014; 37: 117
[21] Zhang H, Shen B G, Xu Z Y, Zheng X Q, Shen J, Hu F X, Sun J R, Long Y. J Appl Phys, 2012; 111: 07A909
[22] Chen Y F, Wang F, Shen B G, Wang G J, Sun J R. J Appl Phys, 2003; 93: 1323
[23] Yamada H. Phys Rev, 1993; 47B: 11211
[24] Huang J H, Sun N K, Liu C L, Ge Y M, Zhang T, Liu F, Si P Z. Acta Metall Sin (Engl Lett), 2014; 27: 27
[25] Chen X, Chen Y G, Tang Y B. J Alloys Compd, 2011; 509: 2864
[26] Pathak A K, Basnyat P, Dubenko I, Stadler S, Ali N. J Appl Phys, 2009; 106: 063917
[27] Balli M, Fruchart D, Sari O, Gignoux D, Huang J H, Hu J, Egolf P W. J Appl Phys, 2009; 106: 023902
[1] 左良, 李宗宾, 闫海乐, 杨波, 赵骧. 多晶Ni-Mn-X相变合金的织构化与功能行为[J]. 金属学报, 2021, 57(11): 1396-1415.
[2] 耿遥祥,特古斯,汪海斌,董闯,王宇鑫. Sn的加入对MnFe(P, Si)合金显微组织和磁性的影响[J]. 金属学报, 2017, 53(1): 77-82.
[3] 王少博, 刘丹敏, 肖卫强, 张振路, 岳明, 张久兴. Mn1.2Fe0.8P0.74Ge0.26-xSex化合物磁热性能研究*[J]. 金属学报, 2014, 50(9): 1109-1114.
[4] 李武会 田保红 马坪 吴尔冬. ScMn2合金贮氢(氘)性能[J]. 金属学报, 2012, 48(7): 822-829.
[5] 王锦红 王荣山 翁立奎 张晏玮 耿建桥. 含Nb锆合金中第二相的吸放氢性能[J]. 金属学报, 2011, 47(9): 1200-1204.
[6] 王冬梅 松林 王耀辉 张伟 毕力格 特古斯. MnFeP0.63Ge0.12Si0.25Bx (x=0, 0.01, 0.02, 0.03)化合物的磁热效应[J]. 金属学报, 2011, 47(3): 344-348.
[7] 张瑞静; 吕曼祺; 陈德敏; 杨柯 . LaNi5-xMx(M=Al, Mn)合金的稳定性及储氢性能研究[J]. 金属学报, 2005, 41(4): 427-432 .
[8] 陈妮; 李锐; 朱云峰; 刘永锋; 潘洪革 . Ti--V基多相贮氢电极合金的电化学吸放氢机理研究[J]. 金属学报, 2004, 40(11): 1200-1204 .
[9] 郑华; 刘实; 赵越 . Ti-10Mo双相全金的吸氢性能[J]. 金属学报, 2003, 39(5): 526-529 .
[10] 赵越; 郑华; 刘实; 杨锐; 王隆保 . Ti-Mo合金的结构及吸放氢性能研究[J]. 金属学报, 2003, 39(1): 89-93 .
[11] 乔桂英; 白象忠 . 单脉冲电流对高速钢裂纹的止裂效果[J]. 金属学报, 2000, 36(7): 718-722 .
[12] 郭进; 李卫 . RENi5及其氢化物电子结构与吸氢性能的相关性研究[J]. 金属学报, 2000, 36(11): 1149-1152 .
[13] 孙业赞; 张国伟; 厉松春; 张国强; 邱宏祥; 于敞 . 液态ZL101A1合金吸氢我的研究[J]. 金属学报, 1999, 35(9): 939-941 .
[14] 马建新; 潘洪革; 王新华; 陈长聘 . FeTi1.3(Mn)y合金的贮氢性能及其吸放氢机理研究[J]. 金属学报, 1999, 35(8): 805-808 .
[15] 赵爽; 林勤 . LaNi5-xMx合金氢化物贮氢性能的计算与预报[J]. 金属学报, 1999, 35(1): 65-69 .