Please wait a minute...
金属学报  2015, Vol. 51 Issue (6): 659-667    DOI: 10.11900/0412.1961.2014.00466
  论文 本期目录 | 过刊浏览 |
锻造和热处理对316LN不锈钢在高温碱性溶液中应力腐蚀行为的影响*
郭跃岭1,2,韩恩厚2(),王俭秋2
1 北京科技大学国家材料服役安全科学中心, 北京100083
2 中国科学院金属研究所中国科学院核用材料与安全评价重点实验室, 沈阳 110016
EFFECTS OF FORGING AND HEAT TREATMENTS ON STRESS CORROSION BEHAVIOR OF 316LN STAINLESS STEEL IN HIGH TEMPERATURE CAUSTIC SOLUTION
Yueling GUO1,2,En-Hou HAN1,2(),Jianqiu WANG2
1 National Center for Materials Service Safety, University of Science and Technology Beijing, Beijing 100083
2 Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Science, Shenyang 110016
引用本文:

郭跃岭, 韩恩厚, 王俭秋. 锻造和热处理对316LN不锈钢在高温碱性溶液中应力腐蚀行为的影响*[J]. 金属学报, 2015, 51(6): 659-667.
Yueling GUO, En-Hou HAN, Jianqiu WANG. EFFECTS OF FORGING AND HEAT TREATMENTS ON STRESS CORROSION BEHAVIOR OF 316LN STAINLESS STEEL IN HIGH TEMPERATURE CAUSTIC SOLUTION[J]. Acta Metall Sin, 2015, 51(6): 659-667.

全文: PDF(13182 KB)   HTML
摘要: 

利用电子背散射衍射 (EBSD) 和显微硬度 (HV) 测量技术, 表征了原始态、锻造固溶处理态和锻造去应力处理态316LN不锈钢 (316LNSS) 的显微组织和残余应变. 利用U型弯曲应力腐蚀评价方法, 研究了3种材料在325 ℃, 3.5%NaOH溶液中的应力腐蚀开裂 (SCC) 行为的差异. 结果表明, 原始态316LNSS的SCC数量最多, 裂纹扩展速率最大, 而锻造固溶处理态316LNSS的SCC敏感性最低; 原始态和锻造固溶处理态的316LNSS在高温碱性溶液中发生明显的沿晶应力腐蚀开裂 (IGSCC), 而锻造去应力态的316LNSS发生混合型SCC; 去应力处理不能有效消除锻造过程中可能产生的条带组织, 不利于316LNSS整体抗SCC性能的提高.

关键词 不锈钢核电材料应力腐蚀开裂高温碱性溶液断口形貌    
Abstract

The reactor coolant piping in the third generation nuclear power plants of AP1000 is manufactured by integrally forging. Therefore, it is of vital importance to investigate the effects of forging and heat treatments on the stress corrosion cracking (SCC) resistance of 316LN stainless steel (316LNSS), which is the candidate material for the reactor coolant piping in AP1000 nuclear power plants. In this work, electron back scattering diffraction (EBSD) and microhardness measurements (HV) were used to characterize the microstructure and residual strain of the as-received 316LNSS, the forged and solution anneal treated 316LNSS and the forged and stress relief treated 316LNSS, respectively. The average grain size of the as-received 316LNSS was the largest, and the forged 316LNSS followed by solution anneal treatment and stress relief treatment showed no obvious differences on grain size. The as-received 316LNSS exhibited the highest residual strain followed by the forged and stress relief treated 316LNSS and then solution anneal treated 316LNSS. Besides, the residual strain in the as-received 316LNSS concentrated on grain boundaries, while the residual strain in the forged and stress relief treated 316LNSS was characterized by a band-like distribution. The U-bend specimens were utilized to investigate the SCC behavior of the 3 kinds of 316LNSS specimens in high temperature caustic solution. After SCC experiments, the crack morphologies of the 3 kinds of 316LNSS specimens were examined by SEM. Then the macro and micro fracture morphologies were examined by OM and SEM, respectively. Grain morphology, residual strain and grain boundary character distribution near the SCC crack tip of the forged and stress relief treated 316LNSS were investigated using EBSD. The results showed that the forged and solution anneal treated 316LNSS exhibited the lowest SCC sensibility, while the as-received the highest, with the most cracks and the highest growth rate. The as-received and the forged and solution anneal treated 316LNSS showed obvious intergranular cracking, while the forged and stress relief treated 316LNSS showed a mixed cracking mode. The larger average grain size and higher residual strain, especially concentrating on the grain boundaries, were considered to be responsible for the highest SCC sensibility of the as-received 316LNSS. Compared with the forged and stress relief treated 316LNSS, the higher content of coincidence site lattice boundary (CSLB) and lower residual strain contributed to the lower SCC sensibility of forged and solution anneal treated 316LNSS. The stress relief treatment failed to eliminate the band-like microstructure effectively, which disadvantaged the SCC resistance.

Key wordsstainless steel    nuclear material    stress corrosion cracking    high temperature caustic solution    fractography
    
基金资助:*国家科技重大专项课题资助项目 2011ZX06004-009 资助
Specimen Rp0.2 / MPa Rm / MPa A / % Z / %
S0 400 603 46 81
S71 267 572 56 82
S72 320 578 50 80
表 1  316LN不锈钢(316LNSS)的常温力学性能
图1  U型弯曲试样的尺寸示意图
图2  3种316LNSS样品的EBSD像
图3  3种316LNSS样品内部夹杂物的SEM像
图4  室温下3种316LNSS样品的显微硬度
图5  3种316LNSS样品的KAM (kernel average misorientation)像
图 6  3种316LNSS样品的晶界特征图
Specimen LAB CSLB RGB
S0 0.30 0.23 0.47
S71 0.02 0.53 0.48
S72 0.21 0.29 0.50
表 2  3种316LNSS样品的晶界特征分布 (GBCD)
图 7  3种316LNSS样品在高温碱性溶液中经应力腐蚀开裂(SCC)实验后的截面形貌
图8  3种316LNSS样品在高温碱性溶液中SCC实验后样品顶部的裂纹形貌
图9  3种316LNSS样品在高温碱性溶液中SCC实验后裂纹的宏观断口形貌
图10  3种316LNSS样品在高温碱性溶液中SCC实验后裂纹的断口形貌
图11  S72 试样的SCC裂纹尖端及其附近区域的EBSD像
[1] Han E-H. Acta Metall Sin, 2011; 47: 769 (韩恩厚. 金属学报, 2011; 47: 769)
[2] Zinkle S J, Was G S. Acta Mater, 2013; 61: 735
[3] Andresen P L, Morra M M. J Nucl Mater, 2008; 383: 97
[4] Zhang L, Wang J Q. J Nucl Mater, 2014; 446: 15
[5] Ma C, Peng Q J, Han E-H, Ke W. J Chin Soc Corros Prot, 2014; 34: 37 (马 成, 彭群家, 韩恩厚, 柯 伟. 中国腐蚀与防护学报, 2014; 34: 37)
[6] Lu Z, Shoji T, Dan T, Qiu Y, Yonezawa T. Corros Sci, 2010; 52: 2547
[7] Yang W, Lu Z, Huang D, Kong D, Zhao G, Congleton J. Corros Sci, 2001; 43: 963
[8] Berge P, Donati J R, Prieux B, Villard D. Corrosion, 1977; 33: 425
[9] Meng F, Lu Z, Shoji T, Wang J Q, Han E-H, Ke W. Corros Sci, 2011; 53: 2558
[10] Lu Y H, Chen Z R, Zhu X F. J Univ Sci Technol Beijing, 2013; 35: 1320 (陆永浩, 陈子瑞, 朱晓锋. 北京科技大学学报, 2013; 35: 1320)
[11] Guo Y, Han E-H, Wang J Q. J Mater Sci Technol, 2015; 31: 403
[12] Carlsson S, Larsson P L. Acta Mater, 2001; 49: 2179
[13] Lu J Z, Luo K Y, Yang D K, Cheng X N, Hu J L, Dai F Z, Qi H, Zhang L, Zhong J S, Wang Q W, Zhang Y K. Corros Sci, 2012; 60: 145
[14] Wang S, Wang J Q. Corros Sci, 2014; 85: 183
[15] Staehle R W, Gorman J A. Corrosion, 2003; 59: 931
[16] Zhang Z, Wang J Q, Han E-H, Ke W. J Mater Sci Technol, 2012; 28: 785
[17] Yu G P, Yao H C. Corrosion, 1990; 46: 391
[18] Zhang Z M, Peng Q J, Wang J Q, Han E-H, Ke W. J Chin Soc Corros Prot, accepted (张志明, 彭青娇, 王俭秋, 韩恩厚, 柯 伟. 中国腐蚀与防护学报, 已接收)
[19] Zheng J H, Bogaerts W F, Brabers M J. Corrosion, 1992; 48: 320
[20] Terachi T, Yamada T, Miyamoto T, Arioka K. J Nucl Mater, 2012; 426: 59
[21] Shoji T, Li G, Kwon J, Matsushima S, Lu Z. Proceedings of the 11th International Conference on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors, Warrendale, PA: TMS, 2003: 834
[22] Hou J, Peng Q J, Shoji T, Wang J Q, Han E-H, Ke W. Corros Sci, 2011; 53: 2956
[23] Hou J, Peng Q J, Lu Z P, Shoji T, Wang J Q, Han E-H, Ke W. Corros Sci, 2011; 53: 1137
[24] Meng F, Han E-H, Wang J Q, Zhang Z, Ke W. Electrochim Acta, 2011; 56: 1781
[25] Hu C L, Xia S, Li H, Liu T G, Zhou B X, Chen W J. Acta Metall Sin, 2011; 47: 939 (胡长亮, 夏 爽, 李 慧, 刘廷光, 周邦新, 陈文觉. 金属学报, 2011; 47: 939)
[26] Alexandreanu B, Was G S. Corrosion, 2003; 59: 705
[1] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[2] 王滨, 牛梦超, 王威, 姜涛, 栾军华, 杨柯. Cu马氏体时效不锈钢的组织与强韧性[J]. 金属学报, 2023, 59(5): 636-646.
[3] 韩恩厚, 王俭秋. 表面状态对核电关键材料腐蚀和应力腐蚀的影响[J]. 金属学报, 2023, 59(4): 513-522.
[4] 吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜. Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展[J]. 金属学报, 2023, 59(4): 502-512.
[5] 常立涛. 压水堆主回路高温水中奥氏体不锈钢加工表面的腐蚀与应力腐蚀裂纹萌生:研究进展及展望[J]. 金属学报, 2023, 59(2): 191-204.
[6] 马志民, 邓运来, 刘佳, 刘胜胆, 刘洪雷. 淬火速率对7136铝合金应力腐蚀开裂敏感性的影响[J]. 金属学报, 2022, 58(9): 1118-1128.
[7] 温冬辉, 姜贝贝, 王清, 李相伟, 张鹏, 张书彦. MoNb改性FeCrAl不锈钢高温组织演变和力学性能[J]. 金属学报, 2022, 58(7): 883-894.
[8] 李民, 李昊泽, 王继杰, 马颖澈, 刘奎. 稀土Ce对薄带连铸无取向6.5%Si钢组织、高温拉伸性能和断裂模式的影响[J]. 金属学报, 2022, 58(5): 637-648.
[9] 郑椿, 刘嘉斌, 江来珠, 杨成, 姜美雪. 拉伸变形对高氮奥氏体不锈钢显微组织和耐腐蚀性能的影响[J]. 金属学报, 2022, 58(2): 193-205.
[10] 原家华, 张秋红, 王金亮, 王灵禺, 王晨充, 徐伟. 磁场与晶粒尺寸协同作用对马氏体形核及变体选择的影响[J]. 金属学报, 2022, 58(12): 1570-1580.
[11] 骆文泽, 胡龙, 邓德安. SUS316不锈钢马鞍形管-管接头的残余应力数值模拟及高效计算方法开发[J]. 金属学报, 2022, 58(10): 1334-1348.
[12] 潘庆松, 崔方, 陶乃镕, 卢磊. 纳米孪晶强化304奥氏体不锈钢的应变控制疲劳行为[J]. 金属学报, 2022, 58(1): 45-53.
[13] 曹超, 蒋成洋, 鲁金涛, 陈明辉, 耿树江, 王福会. 不同Cr含量的奥氏体不锈钢在700℃煤灰/高硫烟气环境中的腐蚀行为[J]. 金属学报, 2022, 58(1): 67-74.
[14] 安旭东, 朱特, 王茜茜, 宋亚敏, 刘进洋, 张鹏, 张钊宽, 万明攀, 曹兴忠. 奥氏体316不锈钢中位错与氢的相互作用机理[J]. 金属学报, 2021, 57(7): 913-920.
[15] 陈果, 王新波, 张仁晓, 马成悦, 杨海峰, 周利, 赵运强. 搅拌头转速对2507双相不锈钢搅拌摩擦加工组织及性能的影响[J]. 金属学报, 2021, 57(6): 725-735.