Please wait a minute...
金属学报  2015, Vol. 51 Issue (6): 659-667    DOI: 10.11900/0412.1961.2014.00466
  论文 本期目录 | 过刊浏览 | 高级检索 |
锻造和热处理对316LN不锈钢在高温碱性溶液中应力腐蚀行为的影响*
郭跃岭1,2,韩恩厚2(),王俭秋2
1 北京科技大学国家材料服役安全科学中心, 北京100083
2 中国科学院金属研究所中国科学院核用材料与安全评价重点实验室, 沈阳 110016
EFFECTS OF FORGING AND HEAT TREATMENTS ON STRESS CORROSION BEHAVIOR OF 316LN STAINLESS STEEL IN HIGH TEMPERATURE CAUSTIC SOLUTION
Yueling GUO1,2,En-Hou HAN1,2(),Jianqiu WANG2
1 National Center for Materials Service Safety, University of Science and Technology Beijing, Beijing 100083
2 Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Science, Shenyang 110016
全文: PDF(13182 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

利用电子背散射衍射 (EBSD) 和显微硬度 (HV) 测量技术, 表征了原始态、锻造固溶处理态和锻造去应力处理态316LN不锈钢 (316LNSS) 的显微组织和残余应变. 利用U型弯曲应力腐蚀评价方法, 研究了3种材料在325 ℃, 3.5%NaOH溶液中的应力腐蚀开裂 (SCC) 行为的差异. 结果表明, 原始态316LNSS的SCC数量最多, 裂纹扩展速率最大, 而锻造固溶处理态316LNSS的SCC敏感性最低; 原始态和锻造固溶处理态的316LNSS在高温碱性溶液中发生明显的沿晶应力腐蚀开裂 (IGSCC), 而锻造去应力态的316LNSS发生混合型SCC; 去应力处理不能有效消除锻造过程中可能产生的条带组织, 不利于316LNSS整体抗SCC性能的提高.

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郭跃岭
韩恩厚
王俭秋
关键词 不锈钢核电材料应力腐蚀开裂高温碱性溶液断口形貌    
Abstract

The reactor coolant piping in the third generation nuclear power plants of AP1000 is manufactured by integrally forging. Therefore, it is of vital importance to investigate the effects of forging and heat treatments on the stress corrosion cracking (SCC) resistance of 316LN stainless steel (316LNSS), which is the candidate material for the reactor coolant piping in AP1000 nuclear power plants. In this work, electron back scattering diffraction (EBSD) and microhardness measurements (HV) were used to characterize the microstructure and residual strain of the as-received 316LNSS, the forged and solution anneal treated 316LNSS and the forged and stress relief treated 316LNSS, respectively. The average grain size of the as-received 316LNSS was the largest, and the forged 316LNSS followed by solution anneal treatment and stress relief treatment showed no obvious differences on grain size. The as-received 316LNSS exhibited the highest residual strain followed by the forged and stress relief treated 316LNSS and then solution anneal treated 316LNSS. Besides, the residual strain in the as-received 316LNSS concentrated on grain boundaries, while the residual strain in the forged and stress relief treated 316LNSS was characterized by a band-like distribution. The U-bend specimens were utilized to investigate the SCC behavior of the 3 kinds of 316LNSS specimens in high temperature caustic solution. After SCC experiments, the crack morphologies of the 3 kinds of 316LNSS specimens were examined by SEM. Then the macro and micro fracture morphologies were examined by OM and SEM, respectively. Grain morphology, residual strain and grain boundary character distribution near the SCC crack tip of the forged and stress relief treated 316LNSS were investigated using EBSD. The results showed that the forged and solution anneal treated 316LNSS exhibited the lowest SCC sensibility, while the as-received the highest, with the most cracks and the highest growth rate. The as-received and the forged and solution anneal treated 316LNSS showed obvious intergranular cracking, while the forged and stress relief treated 316LNSS showed a mixed cracking mode. The larger average grain size and higher residual strain, especially concentrating on the grain boundaries, were considered to be responsible for the highest SCC sensibility of the as-received 316LNSS. Compared with the forged and stress relief treated 316LNSS, the higher content of coincidence site lattice boundary (CSLB) and lower residual strain contributed to the lower SCC sensibility of forged and solution anneal treated 316LNSS. The stress relief treatment failed to eliminate the band-like microstructure effectively, which disadvantaged the SCC resistance.

Key wordsstainless steel    nuclear material    stress corrosion cracking    high temperature caustic solution    fractography
     出版日期: 2015-07-23
基金资助:*国家科技重大专项课题资助项目 2011ZX06004-009 资助
引用本文:   
郭跃岭, 韩恩厚, 王俭秋. 锻造和热处理对316LN不锈钢在高温碱性溶液中应力腐蚀行为的影响*[J]. 金属学报, 2015, 51(6): 659-667.
Yueling GUO, En-Hou HAN, Jianqiu WANG. EFFECTS OF FORGING AND HEAT TREATMENTS ON STRESS CORROSION BEHAVIOR OF 316LN STAINLESS STEEL IN HIGH TEMPERATURE CAUSTIC SOLUTION. Acta Metall, 2015, 51(6): 659-667.
链接本文:  
http://www.ams.org.cn/CN/10.11900/0412.1961.2014.00466      或      http://www.ams.org.cn/CN/Y2015/V51/I6/659
Specimen Rp0.2 / MPa Rm / MPa A / % Z / %
S0 400 603 46 81
S71 267 572 56 82
S72 320 578 50 80
Table 1  316LN不锈钢(316LNSS)的常温力学性能
Fig.1  U型弯曲试样的尺寸示意图
Fig.2  3种316LNSS样品的EBSD像
Fig.3  3种316LNSS样品内部夹杂物的SEM像
Fig.4  室温下3种316LNSS样品的显微硬度
Fig.5  3种316LNSS样品的KAM (kernel average misorientation)像
Fig.6  3种316LNSS样品的晶界特征图
Specimen LAB CSLB RGB
S0 0.30 0.23 0.47
S71 0.02 0.53 0.48
S72 0.21 0.29 0.50
Table 2  3种316LNSS样品的晶界特征分布 (GBCD)
Fig.7  3种316LNSS样品在高温碱性溶液中经应力腐蚀开裂(SCC)实验后的截面形貌
Fig.8  3种316LNSS样品在高温碱性溶液中SCC实验后样品顶部的裂纹形貌
Fig.9  3种316LNSS样品在高温碱性溶液中SCC实验后裂纹的宏观断口形貌
Fig.10  3种316LNSS样品在高温碱性溶液中SCC实验后裂纹的断口形貌
Fig.11  S72 试样的SCC裂纹尖端及其附近区域的EBSD像
[1] Han E-H. Acta Metall Sin, 2011; 47: 769 (韩恩厚. 金属学报, 2011; 47: 769)
[2] Zinkle S J, Was G S. Acta Mater, 2013; 61: 735
[3] Andresen P L, Morra M M. J Nucl Mater, 2008; 383: 97
[4] Zhang L, Wang J Q. J Nucl Mater, 2014; 446: 15
[5] Ma C, Peng Q J, Han E-H, Ke W. J Chin Soc Corros Prot, 2014; 34: 37 (马 成, 彭群家, 韩恩厚, 柯 伟. 中国腐蚀与防护学报, 2014; 34: 37)
[6] Lu Z, Shoji T, Dan T, Qiu Y, Yonezawa T. Corros Sci, 2010; 52: 2547
[7] Yang W, Lu Z, Huang D, Kong D, Zhao G, Congleton J. Corros Sci, 2001; 43: 963
[8] Berge P, Donati J R, Prieux B, Villard D. Corrosion, 1977; 33: 425
[9] Meng F, Lu Z, Shoji T, Wang J Q, Han E-H, Ke W. Corros Sci, 2011; 53: 2558
[10] Lu Y H, Chen Z R, Zhu X F. J Univ Sci Technol Beijing, 2013; 35: 1320 (陆永浩, 陈子瑞, 朱晓锋. 北京科技大学学报, 2013; 35: 1320)
[11] Guo Y, Han E-H, Wang J Q. J Mater Sci Technol, 2015; 31: 403
[12] Carlsson S, Larsson P L. Acta Mater, 2001; 49: 2179
[13] Lu J Z, Luo K Y, Yang D K, Cheng X N, Hu J L, Dai F Z, Qi H, Zhang L, Zhong J S, Wang Q W, Zhang Y K. Corros Sci, 2012; 60: 145
[14] Wang S, Wang J Q. Corros Sci, 2014; 85: 183
[15] Staehle R W, Gorman J A. Corrosion, 2003; 59: 931
[16] Zhang Z, Wang J Q, Han E-H, Ke W. J Mater Sci Technol, 2012; 28: 785
[17] Yu G P, Yao H C. Corrosion, 1990; 46: 391
[18] Zhang Z M, Peng Q J, Wang J Q, Han E-H, Ke W. J Chin Soc Corros Prot, accepted (张志明, 彭青娇, 王俭秋, 韩恩厚, 柯 伟. 中国腐蚀与防护学报, 已接收)
[19] Zheng J H, Bogaerts W F, Brabers M J. Corrosion, 1992; 48: 320
[20] Terachi T, Yamada T, Miyamoto T, Arioka K. J Nucl Mater, 2012; 426: 59
[21] Shoji T, Li G, Kwon J, Matsushima S, Lu Z. Proceedings of the 11th International Conference on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors, Warrendale, PA: TMS, 2003: 834
[22] Hou J, Peng Q J, Shoji T, Wang J Q, Han E-H, Ke W. Corros Sci, 2011; 53: 2956
[23] Hou J, Peng Q J, Lu Z P, Shoji T, Wang J Q, Han E-H, Ke W. Corros Sci, 2011; 53: 1137
[24] Meng F, Han E-H, Wang J Q, Zhang Z, Ke W. Electrochim Acta, 2011; 56: 1781
[25] Hu C L, Xia S, Li H, Liu T G, Zhou B X, Chen W J. Acta Metall Sin, 2011; 47: 939 (胡长亮, 夏 爽, 李 慧, 刘廷光, 周邦新, 陈文觉. 金属学报, 2011; 47: 939)
[26] Alexandreanu B, Was G S. Corrosion, 2003; 59: 705
[1] 张子龙, 夏爽, 曹伟, 李慧, 周邦新, 白琴. 晶界特征对316不锈钢沿晶应力腐蚀开裂裂纹萌生的影响*[J]. 金属学报, 2016, 52(3): 313-319.
[2] 马宏驰, 杜翠薇, 刘智勇, 郝文魁, 李晓刚, 刘超. E690高强钢在SO2污染海洋大气环境中的应力腐蚀行为研究*[J]. 金属学报, 2016, 52(3): 331-340.
[3] 杨文,张立峰,任英,段豪剑,张莹,肖向辉. 利用高分辨同步辐射Micro-CT定量三维表征含Ti铁素体不锈钢铸坯中氧化物夹杂*[J]. 金属学报, 2016, 52(2): 217-223.
[4] 方智,李静媛,陈雨来,江来珠,杜伟. 17%Cr超纯铁素体不锈钢不同方向拉伸起皱的研究*[J]. 金属学报, 2016, 52(1): 33-40.
[5] 康举,李吉超,冯志操,邹贵生,王国庆,吴爱萍. 2219-T8铝合金搅拌摩擦焊接头力学和应力腐蚀性能薄弱区研究*[J]. 金属学报, 2016, 52(1): 60-70.
[6] 徐滨士,方金祥,董世运,刘晓亭,闫世兴,宋超群,夏丹. FV520B不锈钢激光熔覆热影响区组织演变及其对力学性能的影响*[J]. 金属学报, 2016, 52(1): 1-9.
[7] 王永强,杨滨,李娜,林苏华,孙立. σ相在核电一回路主管道不锈钢中的脆化机理*[J]. 金属学报, 2016, 52(1): 17-24.
[8] 朴楠,陈吉,尹成江,孙成,张星航,武占文. 超细晶304L不锈钢在含Cl-溶液中点蚀行为的研究[J]. 金属学报, 2015, 51(9): 1077-1084.
[9] 陈雨来,罗照银,李静媛. 固溶温度对S32760双相不锈钢组织与耐点蚀性能的影响[J]. 金属学报, 2015, 51(9): 1085-1091.
[10] 黄海威, 王镇波, 刘莉, 雍兴平, 卢柯. 马氏体不锈钢上梯度纳米结构表层的形成及其对电化学腐蚀行为的影响*[J]. 金属学报, 2015, 51(5): 513-518.
[11] 杨辉, 夏爽, 张子龙, 赵清, 刘廷光, 周邦新, 白琴. 晶界工程对于改善304奥氏体不锈钢焊接热影响区耐晶间腐蚀性能的影响[J]. 金属学报, 2015, 51(3): 333-340.
[12] 刘毅, 江国锋, 许昆, 罗锡明, 陈登权, 李伟. 中间层金属对Al2O3/1Cr18Ni9Ti钎焊接头组织及剪切强度的影响*[J]. 金属学报, 2015, 51(2): 209-215.
[13] 荣冬松,姜勇,巩建鸣. 奥氏体不锈钢低温超饱和渗碳实验及热动力学模拟研究*[J]. 金属学报, 2015, 51(12): 1516-1522.
[14] 彭亚伟,巩建鸣,荣冬松,姜勇,付明辉,余果. 316L奥氏体不锈钢低温表面渗碳的数值分析*[J]. 金属学报, 2015, 51(12): 1500-1506.
[15] 张盛华,王培,李殿中,李依依. ZG06Cr13Ni4Mo马氏体不锈钢中TRIP效应的同步辐射高能X射线原位研究*[J]. 金属学报, 2015, 51(11): 1306-1314.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed