Please wait a minute...
金属学报  2015, Vol. 51 Issue (5): 561-568    DOI: 10.11900/0412.1961.2014.00451
  论文 本期目录 | 过刊浏览 |
Ti60合金棒材中的织构及其对拉伸性能的影响*
赵子博,王清江(),刘建荣,陈志勇,朱绍祥,于冰冰
中国科学院金属研究所, 沈阳 110016
TEXTURE OF Ti60 ALLOY PRECISION BARS AND ITS EFFECT ON TENSILE PROPERTIES
Zibo ZHAO,Qingjiang WANG(),Jianrong LIU,Zhiyong CHEN,Shaoxiang ZHU,Bingbing YU
Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
引用本文:

赵子博, 王清江, 刘建荣, 陈志勇, 朱绍祥, 于冰冰. Ti60合金棒材中的织构及其对拉伸性能的影响*[J]. 金属学报, 2015, 51(5): 561-568.
Zibo ZHAO, Qingjiang WANG, Jianrong LIU, Zhiyong CHEN, Shaoxiang ZHU, Bingbing YU. TEXTURE OF Ti60 ALLOY PRECISION BARS AND ITS EFFECT ON TENSILE PROPERTIES[J]. Acta Metall Sin, 2015, 51(5): 561-568.

全文: PDF(9741 KB)   HTML
摘要: 

α+β两相区精锻, 直径为30和45 mm (分别定义为D30和D45)的Ti60棒材分别在950, 1000和1050 ℃进行固溶+时效热处理, 研究了热处理温度对棒材织构和拉伸性能的影响. 结果表明, D45棒材锻态组织中, 棒材轴向与α相的<0001>或 < 10 1 ? 0 > 方向平行的丝织构较强; 950 ℃热处理后显微组织和织构变化不明显. 随固溶温度升高, α相的<0001>丝织构增强, 而 <10 1 ? 0 > 丝织构密度减弱. 固溶温度对棒材强度的影响不大. D30棒材锻态组织中主要存在 < 10 1 ? 0 > 方向的丝织构; 随固溶温度升高, <0001>丝织构逐渐增强, 棒材的室温强度显著升高.

关键词 Ti60合金热处理织构拉伸性能    
Abstract

Microstructure and texture of titanium alloy are determined by thermomechanical and heat treatments and can significantly affect the mechanical properties of the final products. In this work, the microstructure and texture evolution during the heat treatment in α/β and β phase field in Ti60 precision forging bars were investigated. The results implied that the actual deformation temperature gradually decreased during precision forging processes. The microstructure and texture of Ti60 bar were determined by the finish forging temperature and the diameter, and strong microtexture macrozones existed in the forged Ti60 bar. For the bar with diameter of 45 mm (D45), the finish forging temperature fell in the lower temperature region of the α/β phase field, and the main α textures in these bars were <0001> and < 10 1 ? 0 > fiber texture components in initial Ti60 bar. The similarity of the microstructure and texture were found after heat treatment at 950 ℃. The intensity of < 10 1 ? 0 > fiber texture gradually decreased while that of <0001> fiber texture increased with the increase of the heat treatment temperature. Heat treatments have little influence on the strength of forged Ti60 bars of D45, while their ductility was reduced after β heat treatment. For the bar with diameter of 30 mm (D30), the finish forging temperature was below the α/β phase field, and the main α texture in those bars was < 10 1 ? 0 > fiber texture component. The intensity of <0001> fiber texture in those bars increased while that of < 10 1 ? 0 > fiber texture gradually decreased with the increase of the heat treatment temperature. Their room temperature strength significantly increased with the increase of the heat treatment temperature, and yield strength and tensile strength reached to 1086 and 1144 MPa, respectively, but the elongation only 3.3% after β heat treatment.

Key wordsTi60 alloy    heat treatment    texture    tensile property
收稿日期: 2014-08-12     
图1  Ti60精锻棒材D45和D30的锻态显微组织
图2  不同热处理条件下Ti60棒材的显微组织
图3  锻态和热处理态Ti60棒材的轴向反极图
图4  Ti60棒材原始组织的EBSD晶体取向分布图
图5  Ti60棒材950 ℃固溶处理后的EBSD晶体取向分布图
图6  Ti60棒材1000 ℃固溶处理后的EBSD晶体取向分布图
图7  Ti60棒材经1000 ℃固溶处理后的EBSD反极图
图8  不同热处理后Ti60棒材的室温拉伸性能
[1] Zhang S Z. PhD Dissertation, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 2004 (张尚州. 中国科学院金属研究所博士学位论文, 沈阳, 2004)
[2] Leyens C,Peters M,translated by Chen Z H. Titanium and Titanium Alloy. Beijing: Chemical Industry Press, 2005: 88 (Leyens C, Peters M著, 陈振华 译. 钛与钛合金. 北京: 化学工业出版社, 2005: 88)
[3] Shi Z, Guo H, Qin C, Liang H, Yao Z. Mater Sci Eng, 2014; A611: 136
[4] Tian X J, Zhang S Q, Wang H M. Int J Electr Power Energy Syst, 2014; 608: 95
[5] Seal J R, Crimp M A, Bieler T R, Boehlert C J. Mater Sci Eng, 2012; A552: 61
[6] Birosca S, Buffiere J Y, Karadge M, Preuss M. Acta Mater, 2011; 59: 1510
[7] Leary R K, Merson E, Birmingham K, Harvey D, Brydson R. Mater Sci Eng, 2010; A527: 7694
[8] Mironov S, Murzinova M, Zherebtsov S, Salishchev G A, Semiatin S L. Acta Mater, 2009; 57: 2470
[9] Wanjara P, Jahazi M, Monajati H, Yue S, Immarigeon J P. Mater Sci Eng, 2005; A396: 50
[10] Warwick J L W, Jones N G, Bantounas I, Preuss M, Dye D. Acta Mater, 2013; 61: 1603
[11] Jia W J, Zeng W D, Han Y T, Liu J R, Zhou Y, Wang Q J. Mater Des, 2011; 32: 4676
[12] Tang Z L, Wang F H, Wu W T, Wang Q J, Li D. Mater Sci Eng, 1998; A255: 133
[13] Xiong Y M, Zhu S L, Wang F H. Surf Coat Technol, 2005; 190: 195
[14] Glavicic M G, Kobryn P A, Bieler T R, Semiatin S L. Mater Sci Eng, 2003; A346: 50
[15] Obasi G C, Birosca S, Leo Prakash D G, Quinta da Fonseca J, Preuss M. Acta Mater, 2012; 60: 6013
[16] Obasi G C, da Fonseca J Q, Rugg D, Preuss M. Mater Sci Eng, 2013; A576: 272
[17] Germain L, Gey N, Humbert M, Vo P, Jahazi M, Bocher P. Acta Mater, 2008; 56: 4298
[18] Stanford N, Bate P S. Acta Mater, 2004; 52: 5215
[19] Van Bohemen S M C, Kamp A, Petrov R H, Kestens L A I, Sietsma J. Acta Mater, 2008; 56: 5907
[20] Shi R, Dixit V, Fraser H L, Wang Y. Acta Mater, 2014; 75: 156
[21] Wang Y N, Huang J C. Mater Chem Phys, 2003; 81: 11
[22] Glavicic M G, Bartha B B, Jha S K, Szczepanski C J. Mater Sci Eng, 2009; A513: 325
[23] Gey N, Bocher P, Uta E, Germain L, Humbert M. Acta Mater, 2012; 60: 2647
[24] Glavicic M G, Kobryn P A, Bieler T R, Semiatin S L. Mater Sci Eng, 2003; A346: 50
[25] Uta E, Gey N, Bocher P, Humbert M, Gilgert J. J Microscopy, 2009; 233: 451
[26] Roy S, Suwas S, Tamirisakandala S, Miracle D B, Srinivasan R. Acta Mater, 2011; 59: 5494
[27] Peck J F, Thomas D A. Trans Met Soc AIME, 1962; 221: 1240
[28] Zhang Z B. Master Thesis, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 2011 (张振波. 中国科学院金属研究所硕士学位论文, 沈阳, 2011)
[1] 常松涛, 张芳, 沙玉辉, 左良. 偏析干预下体心立方金属再结晶织构竞争[J]. 金属学报, 2023, 59(8): 1065-1074.
[2] 王法, 江河, 董建新. 高合金化GH4151合金复杂析出相演变行为[J]. 金属学报, 2023, 59(6): 787-796.
[3] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[4] 王迪, 贺莉丽, 王栋, 王莉, 张思倩, 董加胜, 陈立佳, 张健. Pt-Al涂层对DD413合金高温拉伸性能的影响[J]. 金属学报, 2023, 59(3): 424-434.
[5] 娄峰, 刘轲, 刘金学, 董含武, 李淑波, 杜文博. 轧制态Mg-xZn-0.5Er合金板材组织及室温成形性能[J]. 金属学报, 2023, 59(11): 1439-1447.
[6] 杨累, 赵帆, 姜磊, 谢建新. 机器学习辅助2000 MPa级弹簧钢成分和热处理工艺开发[J]. 金属学报, 2023, 59(11): 1499-1512.
[7] 孙腾腾, 王洪泽, 吴一, 汪明亮, 王浩伟. 原位自生2%TiB2 颗粒对2024Al增材制造合金组织和力学性能的影响[J]. 金属学报, 2023, 59(1): 169-179.
[8] 韩林至, 牟娟, 周永康, 朱正旺, 张海峰. 热处理温度对Ti0.5Zr1.5NbTa0.5Sn0.2 高熵合金组织结构与力学性能的影响[J]. 金属学报, 2022, 58(9): 1159-1168.
[9] 李钊, 江河, 王涛, 付书红, 张勇. GH2909低膨胀高温合金热处理中的组织演变行为[J]. 金属学报, 2022, 58(9): 1179-1188.
[10] 张家榕, 李艳芬, 王光全, 包飞洋, 芮祥, 石全强, 严伟, 单以银, 杨柯. 热处理对一种双峰晶粒结构超低碳9Cr-ODS钢显微组织与力学性能的影响[J]. 金属学报, 2022, 58(5): 623-636.
[11] 曾小勤, 王杰, 应韬, 丁文江. 镁及其合金导热研究进展[J]. 金属学报, 2022, 58(4): 400-411.
[12] 袁波, 郭明星, 韩少杰, 张济山, 庄林忠. 添加3%ZnAl-Mg-Si-Cu合金非等温时效析出行为的影响[J]. 金属学报, 2022, 58(3): 345-354.
[13] 姜伟宁, 武晓龙, 杨平, 顾新福, 解清阁. 热轧硅钢表层动态再结晶区形成规律及剪切织构特征[J]. 金属学报, 2022, 58(12): 1545-1556.
[14] 陈润, 王帅, 安琦, 张芮, 刘文齐, 黄陆军, 耿林. 热挤压与热处理对网状TiBw/TC18复合材料组织及性能的影响[J]. 金属学报, 2022, 58(11): 1478-1488.
[15] 王迪, 黄锦辉, 谭超林, 杨永强. 激光增材制造过程中循环热输入对组织和性能的影响[J]. 金属学报, 2022, 58(10): 1221-1235.