Please wait a minute...
金属学报  2015, Vol. 51 Issue (3): 315-324    DOI: 10.11900/0412.1961.2014.00424
  本期目录 | 过刊浏览 |
升温过程中Nb和Nb-Mo微合金化钢中碳化物的析出行为研究
张正延1,2, 李昭东1, 雍岐龙1, 孙新军1(), 王振强3, 王国栋2
1 钢铁研究总院工程用钢研究所, 北京 100081
2 东北大学轧制技术及连轧自动化国家重点实验室, 沈阳 110819
3 首钢技术研究院, 北京 100043
PRECIPITATION BEHAVIOR OF CARBIDE DURING HEATING PROCESS IN Nb AND Nb-Mo MICRO-ALLOYED STEELS
ZHANG Zhengyan1,2, LI Zhaodong1, YONG Qilong1(), SUN Xinjun1, WANG Zhenqiang3, WANG Guodong2
1 Department of Structural Steels, Central Iron and Steel Research Institure, Beijing 100081
2 State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819
3 Shougang Research Institute of Technology, Beijing 100043
引用本文:

张正延, 李昭东, 雍岐龙, 孙新军, 王振强, 王国栋. 升温过程中Nb和Nb-Mo微合金化钢中碳化物的析出行为研究[J]. 金属学报, 2015, 51(3): 315-324.
Zhengyan ZHANG, Zhaodong LI, Qilong YONG, Xinjun SUN, Zhenqiang WANG, Guodong WANG. PRECIPITATION BEHAVIOR OF CARBIDE DURING HEATING PROCESS IN Nb AND Nb-Mo MICRO-ALLOYED STEELS[J]. Acta Metall Sin, 2015, 51(3): 315-324.

全文: PDF(7269 KB)   HTML
摘要: 

利用Gleeble热模拟实验机、Vickers硬度计、SEM, HRTEM及DSC研究了淬火态含Nb和Nb-Mo微合金钢在升温过程中碳化物的析出行为. 利用经典形核长大理论及Avrami方程对淬火态钢中MC型碳化物的析出动力学进行了计算. 结果表明, 含Nb和Nb-Mo微合金钢淬火后以20 ℃/min的速率加热至不同温度水冷, 在300和700 ℃, 由于e-碳化物和MC型碳化物析出而出现了硬度峰值. MC型碳化物在650 ℃左右析出, 由于析出强化而硬度上升, 与理论计算得到的MC型碳化物的析出鼻子点温度约650 ℃的结果相一致. Mo进入NbC中降低了NbC与铁素体基体的错配度, 从而减小了析出相与铁素体基体间的界面能, 使得(Nb, Mo)C析出动力学加快, 所以Nb-Mo钢中析出相粒子分布更为密集, 尺寸更为细小, 具有较高的析出强化作用.

关键词 碳化物析出Vickers硬度界面能    
Abstract

As an important carbide forming element, Nb plays an important role in steel. Precipitated Nb can restrain the austenite grain growth during soaking process and provide precipitation strengthening after g /a phase transformation. Precipitated or dissolved Nb can inhibit recrystallizaton of deformed austenite. Recently, both Nb and Mo are added in steel to enhance the role of Nb. However, these kinds of researches mostly focused on continual cooling process of g /a transformation or isothermal process during tempering, and precipitation behavior of MC-type carbide in steel containing Nb and Mo during reheating process and the effect of Mo on precipitation of NbC in ferrite were rarely reported. Therefore, in this work, precipitation behaviors of MC-type carbide and the synergistic effect of Nb and Mo in steel containing Nb or Nb-Mo during reheating process at the heat rate 20 ℃/min were investigated by means of Vickers hardness test, SEM, HRTEM and DSC. The results show that both Nb and Nb-Mo steels have hardness peaks at 300 and 700 ℃, which are attributed to the precipitation of e-carbide and MC-type carbide, respectively. The MC-type carbide precipitates at about 650 ℃ during reheating process, which is in a good agreement with the nose temperature of MC-type carbide calculated by Avrami equation. (Nb, Mo)C particle forming in Nb-Mo steel during precipitation has a small mismatch with ferrite matrix compared with NbC, leading to the decrease of interfacial energy. Thus, the precipitation kinetic of MC-type carbide in Nb-Mo steel is faster than that in Nb steel, which results in the denser and finer MC-type carbide and higher precipitation strengthening effect.

Key wordscarbide    precipitation    Vickers hardness    interfacial energy
    
ZTFLH:  TG142  
基金资助:*国家重点基础研究发展计划项目 2010CB630805和国家自然科学基金项目51201036 资助
作者简介: null

张正延, 男, 1986年生, 博士生

Steel C Mn P S Si Al Mo Ti Nb N B Fe
Nb 0.036 1.35 ≤0.0034 ≤0.0057 0.024 0.012 - 0.010 0.1 0.004 0.0012 Bal.
Nb-Mo 0.042 1.38 ≤0.0040 ≤0.0060 0.016 0.014 0.19 0.015 0.1 0.004 0.0010 Bal.
表1  实验用含Nb和Nb-Mo微合金钢的化学成分
图1  Nb和Nb-Mo微合金钢淬火态和升温至不同温度后水冷的Vickers硬度
图2  经1200 ℃均热5 h水淬后含Nb和Nb-Mo微合金钢的SEM像
图3  Nb和Nb-Mo微合金钢升温至不同温度水冷后的SEM像
图4  淬火后Nb-Mo微合金钢中M/A岛的TEM明场像、暗场像、衍射谱和加热至300 ℃水冷后Nb-Mo微合金钢中e-碳化物的TEM像及EDS谱
图5  Nb和Nb-Mo微合金钢分别加热至500, 600和700 ℃立即水冷后的TEM像
图 6  Nb和Nb-Mo微合金钢中析出相的形貌、HRTEM像和相应的EDS谱
图 7  Nb和Nb-Mo微合金钢在升温过程中的DSC曲线
图8  (NbxMo1-x)C的点阵常数随Mo原子占位分数的变化
图 9  (NbxMo1-x)C与铁素体基体间的界面能随温度的变化
图 10  (NbxMo1-x)C在升温过程中析出时的临界形核功 ΔGc 和临界形核尺寸 dc 随温度的变化
图11  (NbxMo1-x)C在升温过程中的析出-温度-时间(PTT)动力学曲线
[1] Yong Q L,Ma M T,Wu B R.Micro-Alloyed Steels-Physical Mechanical Metallurgy. Beijing: China Machine Press, 1989: 30
[1] (雍岐龙,马鸣图,吴宝榕. 微合金钢-物理和力学冶金. 北京: 机械工业出版社, 1989: 30)
[2] De Ardo A J. In: Fu J Y, Wang W Z eds., Niobium Science & Technology. Beijing: Metallurgical Industry Press, 2003: 271
[2] (De Ardo A J. 见:付俊岩, 王伟哲主编, 铌科学与技术. 北京: 冶金工业出版社, 2003: 271)
[3] Rainforth W M, Black M P, Higginson R L, Palmiere E J, Sellars C M, Prabst I, Warbichler P, Hofer F. Acta Mater, 2002; 50: 735
[4] Cao Y B, Xiao F R, Qiao G Y, Huang C J, Zhang X B, Wu Z X, Liao B. Mater Sci Eng, 2012; A552: 502
[5] Zhang Z H, Liu Y N, Liang X K, She Y. Mater Sci Eng, 2008; A474: 254
[6] Park D B, Huh M Y, Shim J H, Suh J Y, Lee K H, Jung W S. Mater Sci Eng, 2013; A560: 528
[7] Weng Y Q. Ultra-Fine Grained Steels. Beijing: Metallurgical Industry Press, 2008: 58
[7] (翁宇庆. 超细晶钢. 北京: 冶金工业出版社, 2008: 58)
[8] Huang G J, Kong X L, Guan J, An X G. Microalloying Technol, 2009; 3-4: 293
[8] (黄国建, 孔祥磊, 关菊, 安晓光. 微合金化技术, 2009; 3-4: 293)
[9] Chi H X, Ma D S, Liu J H, Chen Z Z, Yong Q L. Microalloying Technol, 2009; 3-4; 427
[9] (迟宏宵, 马党参, 刘建华, 陈再枝, 雍岐龙. 微合金化技术, 2009; 3-4: 427)
[10] Chijiiwa R, Tamehiro H, Yoshida Y, Funato K, Uemori R, Horii Y. Nippon Steel Tech Report, 1993; 58: 47
[11] Cao J C, Yong Q L, Liu Q Y, Sun X J. J Mater Sci, 2007; 42: 10080
[12] Uemori R, Chijiiwa R, Tamehiro H, Moriawa H. Appl Surf Sci, 1994; 76-77: 255
[13] Yu H, Zhang D D, Xiao R T, Zhuo P, Li C M. J Univ Sci Technol Beijing, 2011; 33: 715
[13] (于 浩, 张道达, 肖荣亭, 周 平, 李灿明. 北京科技大学学报, 2011; 33: 715 )
[14] Yang G W, Sun X J, Li Z D, Li X X, Yong Q L. Mater Sci Technol, 2013; 21: 118
[14] (杨庚蔚, 孙新军, 李昭东, 李晓闲, 雍岐龙. 材料科学与工艺, 2013; 21: 118)
[15] Liu Q D, Liu W Q, Wang Z M, Zhou B X. Acta Metall Sin, 2009; 45: 1281
[15] (刘庆冬, 刘文庆, 王泽民, 周邦新. 金属学报, 2009; 45: 1281)
[16] Liu Q D, Peng J C, Liu W Q, Zhou B X. Acta Metall Sin, 2009; 45: 1288
[16] (刘庆冬, 彭剑超, 刘文庆, 周邦新. 金属学报, 2009; 45: 1288)
[17] Liu Q D, Chu Y L, Peng J C, Liu W Q, Zhou B X. Acta Metall Sin, 2009; 45: 1297
[17] (刘庆冬, 褚于良, 彭剑超, 刘文庆, 周邦新. 金属学报, 2009; 45: 1297)
[18] Yong Q L. Secondary Phase in Steels. Beijing: Metallurgical Industry Press, 2006: 361
[18] (雍岐龙. 钢铁材料中的第二相. 北京: 冶金工业出版社, 2006: 361)
[19] Olasolo M, Uranga P, Rodriguez J. M, Lopea. Mater Sci Eng, 2011; A528: 2559
[20] Duan L N, Chen Y, Liu Q Y, Jia S J, Jia C C. J Iron Steel Int, 2014; 21: 227
[21] Wang L J, Cai Q W, Wu H B, Yu W. J Univ Sci Technol Beijing, 2010; 32: 1150
[21] (王立军, 蔡庆伍, 武会宾, 余 伟. 北京科技大学学报, 2010; 32: 1150)
[22] Pan J S,Tong J M,Tian M B. Fundamentals of Material Science. Beijing: Tsinghua University Press, 2011: 660
[22] (潘金生,仝健民,田民波. 材料科学基础. 北京: 清华大学出版社, 2011: 660)
[23] Cao J C, Yong Q L, Liu Q Y, Sun X J. Trans Mater Heat Treat, 2006; 27(5): 51
[23] (曹建春, 雍岐龙, 刘清友, 孙新军. 材料热处理学报, 2006; 27(5): 51)
[24] Jang J H, Lee C H, Heo Y U, Suh D W. Acta Mater, 2012; 60: 208
[25] Sakuma T, Watanabe N, Nishizawa T. Trans JIM, 1980; 21: 159
[26] Zhao P,Xie F Z,Sun Z G.Materials Science Essentials. Harbin: Harbin Institute of Technology Press, 2009: 226
[26] (赵 品,谢辅洲,孙振国.材料科学基础教程.哈尔滨: 哈尔滨工业大学出版社, 2009: 226)
[27] Wang Z Q, Yong Q L, Sun X J, Yang Z G, Li Z D, Zhang C, Weng Y Q. ISIJ Int, 2012; 52: 1661
[28] Denton A R, Ashcroft N W. Phys Rev, 1991; 43A: 3161
[29] Qadri S B, Fuller W W, Kihlstrom K E, Simon R W, Skelton E F, VanVechten D, Wolf S. A. J Vacuum Sci Technol, 1985; 3A: 664
[30] Willens R H, Buehler E, Matthias B T. Phys Rev, 1967; 159: 327
[31] Wang Z Q, Sun X J, Yang Z G, Yong Q L, Zhang C, Li Z D, Weng Y Q. Mater Sci Eng, 2013; A573: 84
[1] 梁凯, 姚志浩, 谢锡善, 姚凯俊, 董建新. 新型耐热合金SP2215组织与性能的关联性[J]. 金属学报, 2023, 59(6): 797-811.
[2] 王长胜, 付华栋, 张洪涛, 谢建新. 冷轧变形对高性能Cu-Ni-Si合金组织性能与析出行为的影响[J]. 金属学报, 2023, 59(5): 585-598.
[3] 刘继浩, 周健, 武会宾, 马党参, 徐辉霞, 马志俊. 喷射成形M3高速钢偏析成因及凝固机理[J]. 金属学报, 2023, 59(5): 599-610.
[4] 朱云鹏, 覃嘉宇, 王金辉, 马鸿斌, 金培鹏, 李培杰. 机械球磨结合粉末冶金制备AZ61超细晶镁合金的组织与性能[J]. 金属学报, 2023, 59(2): 257-266.
[5] 陈凯旋, 李宗烜, 王自东, Demange Gilles, 陈晓华, 张佳伟, 吴雪华, Zapolsky Helena. Cu-2.0Fe合金等温处理过程中富Fe析出相的形态演变[J]. 金属学报, 2023, 59(12): 1665-1674.
[6] 马国楠, 朱士泽, 王东, 肖伯律, 马宗义. SiC颗粒增强Al-Zn-Mg-Cu复合材料的时效行为和力学性能[J]. 金属学报, 2023, 59(12): 1655-1664.
[7] 芮祥, 李艳芬, 张家榕, 王旗涛, 严伟, 单以银. 新型纳米复合强化9Cr-ODS钢的设计、组织与力学性能[J]. 金属学报, 2023, 59(12): 1590-1602.
[8] 巩向鹏, 伍翠兰, 罗世芳, 沈若涵, 鄢俊. 自然时效对Al-2.95Cu-1.55Li-0.57Mg-0.18Zr合金160℃人工时效的影响[J]. 金属学报, 2023, 59(11): 1428-1438.
[9] 李小琳, 刘林锡, 李雅婷, 杨佳伟, 邓想涛, 王海丰. 单一 MX 型析出相强化马氏体耐热钢力学性能及蠕变行为[J]. 金属学报, 2022, 58(9): 1199-1207.
[10] 李闪闪, 陈云, 巩桐兆, 陈星秋, 傅排先, 李殿中. 冷速对高碳铬轴承钢液析碳化物凝固析出机制的影响[J]. 金属学报, 2022, 58(8): 1024-1034.
[11] 刘续希, 柳文波, 李博岩, 贺新福, 杨朝曦, 恽迪. 辐照条件下Fe-Cu合金中富Cu析出相的临界形核尺寸和最小能量路径的弦方法计算[J]. 金属学报, 2022, 58(7): 943-955.
[12] 高川, 邓运来, 王冯权, 郭晓斌. 蠕变时效对欠时效7075铝合金力学性能的影响[J]. 金属学报, 2022, 58(6): 746-759.
[13] 唐帅, 蓝慧芳, 段磊, 金剑锋, 李建平, 刘振宇, 王国栋. 铁素体区等温过程中Ti-Mo-Cu微合金钢中的共析出行为[J]. 金属学报, 2022, 58(3): 355-364.
[14] 袁波, 郭明星, 韩少杰, 张济山, 庄林忠. 添加3%ZnAl-Mg-Si-Cu合金非等温时效析出行为的影响[J]. 金属学报, 2022, 58(3): 345-354.
[15] 韩汝洋, 杨庚蔚, 孙新军, 赵刚, 梁小凯, 朱晓翔. 钒微合金化中锰马氏体耐磨钢奥氏体晶粒长大行为[J]. 金属学报, 2022, 58(12): 1589-1599.