Please wait a minute...
金属学报  2015, Vol. 51 Issue (2): 191-200    DOI: 10.11900/0412.1961.2014.00407
  本期目录 | 过刊浏览 |
模拟工业-海岸大气中pH值对Q235B钢腐蚀行为的影响*
陈文娟(), 郝龙, 董俊华, 柯伟, 文怀梁
中国科学院金属研究所材料环境腐蚀研究中心, 沈阳 110016
EFFECT OF pH VALUE ON THE CORROSION EVOLUTION OF Q235B STEEL IN SIMULATED COASTAL-INDUSTRIAL ATMOSPHERES
CHEN Wenjuan(), HAO Long, DONG Junhua, KE Wei, WEN Huailiang
Environmental Corrosion Research Center of Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
引用本文:

陈文娟, 郝龙, 董俊华, 柯伟, 文怀梁. 模拟工业-海岸大气中pH值对Q235B钢腐蚀行为的影响*[J]. 金属学报, 2015, 51(2): 191-200.
Wenjuan CHEN, Long HAO, Junhua DONG, Wei KE, Huailiang WEN. EFFECT OF pH VALUE ON THE CORROSION EVOLUTION OF Q235B STEEL IN SIMULATED COASTAL-INDUSTRIAL ATMOSPHERES[J]. Acta Metall Sin, 2015, 51(2): 191-200.

全文: PDF(1109 KB)   HTML
摘要: 

采用干/湿交替腐蚀增重模拟实验、XRD以及EIS等方法, 研究了模拟工业-海岸大气中pH值变化对Q235B钢腐蚀行为的影响. 结果表明, 当SO2浓度较低时, pH值变化对Q235B钢腐蚀速率的影响不明显; 当SO2浓度较高时, pH值变化对Q235B钢腐蚀速率的影响存在极值现象, 即: 当pH值处于“较高”和“较低”之间某一值时, Q235B钢的腐蚀速率达到极大值. 当模拟工业-海岸大气中SO2浓度一定时, pH值变化对Q235B钢表面锈层相组成的影响不明显. 分析表明, 模拟工业-海岸大气环境中SO2的存在一定程度上抑制了β-FeOOH的形成. 随着SO2浓度的升高, 锈层中β-FeOOH和ϒ-FeOOH的相对含量在减少, ϒ-FeOOH可能发生了向Fe3O4的还原或向α-FeOOH的相变转化. 随着腐蚀时间的延长, 锈层相组成的演化呈现出相似的规律. 此外, 当模拟工业-海岸大气中SO2浓度较低时, Q235B钢腐蚀主要遵循Cl-的循环机制, 改变pH值对钢腐蚀行为的影响不明显; SO2浓度较高时, Q235B钢腐蚀初期主要遵循Cl-的循环机制, 随着腐蚀时间的延长, SO2对腐蚀的影响逐渐显著, 并以H2SO4再生循环的方式加速钢的腐蚀。

关键词 Q235B钢干/湿交替实验工业-海岸大气腐蚀锈层    
Abstract

The atmosphere in many cities along the coastal lines such as Qingdao in China has been polluted with SO2 due to the development of industry, and the atmosphere therefore has been changed to coastal-industrial atmosphere. The corrosion behavior and mechanism of steels in coastal-industrial atmosphere with the co-existence of SO2 and Cl- are different from that in the coastal atmosphere containing only Cl- or the industrial atmosphere containing only SO2. In addition, pH value is diverse in different coastal-industrial atmosphere. However, there are only few researches on the effect of pH value on the corrosion evolution of steels in the coastal-industrial atmosphere. Almost all the atmospheric corrosion data of steels were obtained by the field exposure test, which could not reflect the dependence of the atmospheric corrosion evolution of steels on pH value due to the difficulties in controlling the field conditions. In this work, the effect of pH value on the corrosion evolution of Q235B steel in the simulated coastal-industrial atmospheres has been investigated by the dry/wet cyclic corrosion test (CCT), XRD and EIS. The results indicate that, when the content of SO2 is lower, changing pH value has no effect on the corrosion of the steel. When the content of SO2 is higher, the corrosion rate of Q235B steel influenced by changing pH value shows an extreme phenomenon, that is, when the pH value being a certain value between the "higher" and the "lower", the corrosion rate of Q235B steel reaches the maximum value. When the SO2 content is certain, changing pH value almost has no effect on the rust composition. To some extent, the existence of SO2 inhibits the formation of β-FeOOH. With the increasing of SO2 content, the relative contents of β-FeOOH and ϒ-FeOOH are decreasing, and ϒ-FeOOH maybe reduced back to Fe3O4 or transform to α-FeOOH. With the corrosion process prolongs, the rust evolution shows almost the same trend. In addition, when the content of SO2 in the simulated coastal-industrial atmosphere is lower, the Q235B steel mainly follows Cl- corrosion mechanism, and the influence of pH value on corrosion behavior of the steel is not obvious. When the content of SO2 is higher, the Q235B steel also follows Cl- corrosion mechanism in the early stage; with prolonging the dry/wet cyclic corrosion test number, H2SO4 regeneration mechanism accelerates corrosion of the steel as the effect of SO2 on corrosion increasing significantly。

Key wordsQ235B steel    dry/wet cyclic test    coastal-industrial atmosphere    atmospheric corrosion    rust layer
收稿日期: 2014-07-23     
ZTFLH:  TG172.3  
基金资助:*国家自然科学基金项目 51201170和51131007, 国家重点基础研究发展计划项目2014CB643300 和国家材料环境腐蚀平台项目资助
作者简介: null

陈文娟, 女, 1986年生, 博士生

Atmosphere Na2SO3 / (mol·L-1) NaCl / (mol·L-1) pH value
No.1 0.001 0.050 3.5
No.2 0.001 0.050 4.5
No.3 0.001 0.050 6.0
No.4 0.010 0.050 3.5
No.5 0.010 0.050 4.5
No.6 0.010 0.050 6.0
No.7 0.150 0.050 3.5
No.8 0.150 0.050 4.5
No.9 0.150 0.050 6.0
表1  模拟工业-海岸大气环境所用电解质溶液浓度与pH值
图1  Q235B钢在模拟工业-海岸大气中的腐蚀增重结果线性坐标曲线
图2  Q235B钢在模拟工业-海岸大气中的腐蚀增重结果对数坐标曲线
Atmosphere 1st stage 2nd stage 3rd stage 4th stage
No.1 y=-0.108+0.991x - - -
R2=0.998
No.2 y=-0.069+0.958x - - -
R2=0.998
No.3 y=-0.122+0.996x - - -
R2=0.999
No.4 y=-0.094+1.039x - - -
R2=0.999
No.5 y=-0.044+1.006x - - -
R2=0.999
No.6 y=-0.072+1.031x - - -
R2=0.999
No.7 y=0.057+0.772x y=0.232+0.566x y=-0.725+1.401x y=-0.176+0.994x
R2=0.977 R2=0.992 R2=0.996 R2=0.999
No.8 y=0.062+0.849x y=0.256+0.605x y=-0.664+1.405x y=-0.096+1.007x
R2=0.997 R2=0.992 R2=0.996 R2=0.995
No.9 y=0.047+0.795x y=0.199+0.614x y=-0.705+1.398x y=-0.014+0.877x
R2=0.981 R2=0.964 R2=0.995 R2=0.998
表2  Q235B钢在模拟工业-海岸大气中9条腐蚀增重曲线的分段拟合结果
图3  Q235B钢在模拟工业-海岸大气中腐蚀速率随干/湿交替次数变化的曲线
图4  Q235B钢在模拟工业-海岸大气中腐蚀不同周期后腐蚀产物的XRD谱
图5  Q235B钢在模拟工业-海岸大气中腐蚀120 cyc后腐蚀产物的同步辐射XRD谱
图6  Q235B钢带锈电极在0.150 mol/L Na2SO3工业-海岸大气模拟液中的EIS的Bode图
图7  拟合Q235B钢带锈电极在0.150 mol/L Na2SO3工业-海岸大气模拟液中EIS的等效电路示意图
图8  Q235B钢带锈电极在0.150 mol/L Na2SO3工业-海岸大气模拟液中EIS拟合结果
[1] Leygraf C, Graedel T. Atmospheric Corrosion. New York: John Wiley & Sons, 2000: 10
[2] Singh D D N, Yadav S, Saha J K. Corros Sci, 2008; 50: 93
[3] Mendoza A R, Corvo F. Corros Sci, 1999; 41: 75
[4] Castaño J G, Botero C A, Restrepo A H, Agudelo E A, Correa E, Echeverría F. Corros Sci, 2010; 52: 216
[5] Hou W T, Liang C F. Corrosion, 1999; 55: 65
[6] Zhang Q C, Wu J S, Wang J J, Zheng W L, Li A B. Mater Chem Phys, 2002; 77: 603
[7] Saha J K. Corrosion of Constructional Steels in Marine and Industrial Environment. Heidelberg: Springer, 2013: 13
[8] Asami K, Kikuchi M. Corros Sci, 2003; 45: 2671
[9] Shiotani K, Tanimoto W, Maeda C, Kawabata F, Amano K. Corros Eng, 2000; 49: 67
[10] Hao L, Zhang S X, Dong J H, Ke W. Corros Sci, 2012; 59: 270
[11] Chen W J, Hao L, Dong J H, Ke W. Corros Sci, 2014; 83: 155
[12] Chen W J, Hao L, Dong J H, Ke W, Wen H L. Acta Metall Sin, 2014; 50: 802
[12] (陈文娟, 郝 龙, 董俊华, 柯 伟, 文怀梁. 金属学报, 2014; 50: 802)
[13] Evans U R,translated by Zhao K Q. The Corrosion of Metals. Beijing: Metallurgical Industry Press, 1987: 14, 114
[13] (Evans U R著,赵克清 译. 金属腐蚀基础. 北京: 冶金工业出版社, 1987: 14, 114)
[14] Evans U R, Taylor C A J. Corros Sci, 1972; 12: 227
[15] Evans U R. Corros Sci, 1969; 9: 813
[16] Whitman G W, Russell R P, Altieri V J. Ind Eng Chem, 1924; 16: 665
[17] Misawa T, Kyuno T, Suetaka W, Shimodaira S. Corros Sci, 1971; 11: 35
[18] Benarie M, Lipfert F L. Atmos Environ, 1986; 20: 1947
[19] Nishikata A, Ichihara Y, Hayashi Y, Tsuru T. J Electrochem Soc,1997; 144: 1244
[20] Graedel T E, Frankenthal R P. J Electrochem Soc, 1990; 137: 2385
[21] Nishimura T, Katayama H, Noda K, Kodama T. Corros Sci, 2000; 42: 1611
[22] Nishikata A, Yamashita Y, Katayama H, Tsuru T, Usami A, Tanabe K, Mabuchi H. Corros Sci, 1995; 37: 2059
[23] Hao L, Zhang S X, Dong J H, Ke W. Corros Sci, 2012; 58: 175
[24] Dong J H. Corros Sci Prot Technol, 2010; 22: 261
[24] (董俊华. 腐蚀科学与防护技术, 2010; 22: 261)
[25] Pourbaix M. Atmospheric Corrosion. New York: John Wiley & Sons, 1980: 107
[26] Legault R A, Preban A G. Corrosion, 1975; 31: 117
[27] Mansfeld F. Corrosion, 1988; 44: 856
[28] Mansfeld F, Lin S, Chen Y C. J Electrochem Soc, 1988; 135: 906
[29] Allam I M, Arlow J S, Saricimen H. Corros Sci, 1991; 32: 417
[30] Hao L, Zhang S X, Dong J H, Ke W. Metall Mater Trans, 2012: 43A: 1724
[1] 刘雨薇, 顾天真, 王振尧, 汪川, 曹公望. Q235Q450NQR1在中国南沙海洋大气环境中暴晒34个月后的腐蚀行为[J]. 金属学报, 2022, 58(12): 1623-1632.
[2] 李恺强, 杨璐嘉, 徐云泽, 王晓娜, 黄一. SO42-对模拟孔隙液中Q235B钢筋腐蚀行为的影响[J]. 金属学报, 2019, 55(4): 457-468.
[3] 卢云飞,董俊华,柯伟. SO42-对NiCu低合金钢在除氧NaHCO3溶液中腐蚀行为的影响[J]. 金属学报, 2015, 51(9): 1067-1076.
[4] 卢云飞, 阳靖峰, 董俊华, 柯伟. NiCu低合金钢在含Cl-的除氧NaHCO3溶液中的腐蚀行为研究[J]. 金属学报, 2015, 51(4): 440-448.
[5] 陈文娟, 郝龙, 董俊华, 柯伟, 文怀梁. 模拟工业-海岸大气中SO2对Q235B钢腐蚀行为的影响*[J]. 金属学报, 2014, 50(7): 802-810.
[6] 彭欣 王佳 山川 王海杰 刘在健 邹妍. 带锈碳钢在流动海水中的长期腐蚀行为[J]. 金属学报, 2012, 48(10): 1260-1266.
[7] 刘杰 李相波 王佳. 模拟深海压力对2种低合金钢腐蚀行为的影响[J]. 金属学报, 2011, 47(6): 697-705.
[8] 高新亮 朱苗勇 付贵勤 汪峰 邓志银. 桥梁耐候钢在含Cl-离子环境中的腐蚀行为[J]. 金属学报, 2011, 47(5): 520-527.
[9] 曹国良 李国明 陈珊 常万顺 陈学群. 海水飞溅区Ni-Cu-P钢的锈层和耐点蚀性能研究[J]. 金属学报, 2011, 47(2): 145-151.
[10] 曹国良 李国明 陈珊 常万顺 陈学群. 典型耐海水腐蚀钢中Ni和Cr耐点蚀作用的比较[J]. 金属学报, 2010, 46(6): 748-754.
[11] 柯伟 董俊华. Mn-Cu钢大气腐蚀锈层演化规律及其耐候性的研究[J]. 金属学报, 2010, 46(11): 1365-1378.
[12] 邹妍 郑莹莹 王燕华 王佳 . 低碳钢在海水中的阴极电化学行为[J]. 金属学报, 2010, 46(1): 123-128.
[13] 崔雷 杨善武 王树涛 高克玮 贺信莱. 锈层损伤对低碳贝氏体钢在含Cl-环境中腐蚀行为的影响[J]. 金属学报, 2009, 45(4): 442-449.
[14] 张红 齐慧滨 杜翠薇 李晓刚. 湿热环境中碱性泥浆附着下镀锌钢板的腐蚀行为[J]. 金属学报, 2009, 45(3): 338-344.
[15] 刘丽宏; 李; 明; 李晓刚; 卢燕平; 齐慧滨 . 耐候钢表面锈层稳定化处理用新型涂层研究[J]. 金属学报, 2004, 40(11): 1195-1199 .