Please wait a minute...
金属学报  2015, Vol. 51 Issue (2): 178-190    DOI: 10.11900/0412.1961.2014.00401
  本期目录 | 过刊浏览 |
双钨极TIG电弧-熔池传热与流动数值模拟*
王新鑫1, 樊丁1,2(), 黄健康1,2, 黄勇1,2
1 兰州理工大学材料科学与工程学院, 兰州 730050
2 兰州理工大学省部共建有色金属先进加工与再利用国家重点实验室, 兰州 730050
NUMERICAL SIMULATION OF HEAT TRANSFER AND FLUID FLOW IN DOUBLE ELECTRODES TIG ARC-WELD POOL
WANG Xinxin1, FAN Ding1,2(), HUANG Jiankang1,2, HUANG Yong1,2
1 School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050
2 State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals, Lanzhou University of Technology, Lanzhou 730050
引用本文:

王新鑫, 樊丁, 黄健康, 黄勇. 双钨极TIG电弧-熔池传热与流动数值模拟*[J]. 金属学报, 2015, 51(2): 178-190.
Xinxin WANG, Ding FAN, Jiankang HUANG, Yong HUANG. NUMERICAL SIMULATION OF HEAT TRANSFER AND FLUID FLOW IN DOUBLE ELECTRODES TIG ARC-WELD POOL[J]. Acta Metall Sin, 2015, 51(2): 178-190.

全文: PDF(7672 KB)   HTML
摘要: 

针对双钨极TIG电弧热源, 在已建立的双钨极电弧-熔池统一的三维数学模型的基础上, 以SUS304不锈钢为母材, 模拟得到了双钨极TIG电弧和熔池的温度、速度、电流密度、磁通密度和电磁力等分布, 模拟结果与已有的实验结果吻合良好. 考虑了熔池所受浮力、电磁力、等离子流拉力和Marangoni剪切力以及湍流效应, 分析了熔池热输入的分布和熔池表面剪切力的变化, 并分别比较了这几个力单独作用下的熔池流动与传热, 同时结合无量纲数Pe, 比较了熔池热传导和热对流的相对强弱. 结果表明, 双钨极电弧的非轴对称特性导致熔池表面的电流密度、热流密度、等离子流拉力和Marangoni剪切力等出现非轴对称分布, 最终形成了熔池的非轴对称形貌, 而熔池的发展演化对电弧行为无明显影响. 与TIG电弧相比, 双钨极TIG电弧的等离子流拉力明显减小. Marangoni剪切力决定不锈钢熔池的流动状态, 且对流传热主导不锈钢熔池的热传递, 这两者的共同作用决定熔池的传热过程, 是形成不同熔池形貌的根本原因。

关键词 双钨极数值模拟传热非对称无量纲数    
Abstract

Based on a developed unified three dimension (3D) mathematical model including two tungsten electrodes arc and weld pool for double electrode TIG arc heat source, the temperature, velocity, current density, magnetic flux and Lorentz force of the double electrodes TIG arc and the weld pool are obtained for SUS304 stainless steel. The simulated results are in fair agreement with the experimental results available. Buoyance, Lorentz force, plasma drag force, Marangoni shear stress and turbulent effect are taken into account to formulate the weld pool behavior and the effects of the each force on the flow of the weld pool are studied respectively. The heat flux and shear stress at the weld pool surface are analyzed as well. A dimensionless number Pe is used to compare the relative importance of convective heat and conductive heat in the weld pool. It is shown that non-axisymmetric double electrode arc results in the non-axisymmetric characteristics of the current density, heat flux, plasma drag force and Marangoni shear at the weld pool, and thus produces non-axisymmetric weld pool profiles. The evolution of the weld pool has little effect on the arc behavior. The plasma drag force of the double tungsten electrode TIG arc decreases significantly compared with that of the TIG arc. The Marangoni stress determines the weld pool flow and the heat convected dominates the heat transfer in the weld pool, their combination effect determines the heat transfer in the weld pool, which is the essential reason for the formation of the different weld pool profiles。

Key wordsdouble electrode    numerical simulation    heat transfer    non-axisymmetric    dimensionless number
收稿日期: 2014-07-21     
ZTFLH:  TG402  
基金资助:* 国家自然科学基金项目51074084和51205179资助
作者简介: null

王新鑫, 男, 1985年生, 博士生

图1  求解域和边界条件示意图
Area v / (m·s-1) T / K ?? Φ / V A / (Wb·m-1)
A v z = v ( x , y ) T=T(x, y) ? Φ ? n = 0 ? A ? n = 0
B ? ( ρ v ) ? n = 0 ? T ? n = 0 ? Φ ? n = 0 A=0
C - Eq.(18) ? Φ ? n = 0 A=0
D - Eq.(18) 0 ? A ? n = 0
E - 1800 - σ e ? Φ ? z = I π r c 2 ? A ? n = 0
表1  边界条件
Parameter Value Unit
Radiative emissivity er 0.4
Boltzmann constant kB 1.381×10-23 J·K-1
elementary charge e 1.6×10-19 C
Stefan-Boltzmann constant s 5.67×10-8 W·m-2·K-4
Permeability m0 4p×10-7 H·m-1
Latent heat L 2.47×105 J·kg-1
Ambient temperature T 300 K
Solidus temperature Ts 1673 K
Liquidus temperature Tl 1723 K
Density r 7200 kg·m-3
Thermal expansion coefficient β 10-4 K-1
Convection heat transfer coefficient hc 80 W·m-2·K-1
表2  模拟用到的物理常数[19,25,43]
图2  不同保护气氛定点焊接2 s时电弧和熔池xz面和yz面的温度场和流场
图3  xz面的电流密度和电磁力分布
图4  阳极表面0.15 mm处的温度场、流场和磁场
图5  定点焊接2 s时不同保护气氛下熔池表面的温度场
图6  不同保护气氛下熔池表面x和y方向的温度分布
图7  熔池表面x和y方向电流密度和热流密度分布
图8  定点焊接2 s时不同保护气氛下熔池表面的剪切力分布
图9  各驱动力单独作用下的熔池流动
图10  熔池驱动力单独作用下的熔池尺寸和最大流速
图11  熔池尺寸和熔池表面热流密度和电流密度峰值随时间的变化
图12  双钨极TIG电弧形貌
图13  不同保护气氛下模拟和实验的熔池形貌对比
图 14  计算和实验的焊缝尺寸对比
[1] Kobayashi K, Nishimura Y, Lijima T, Ushio M, Tanaka M, Shimamura J, Ueno Y, Yamashita M. Weld World, 2004; 48(7/8): 35
[2] Fan D, Lin T, Huang Y. Trans China Weld Inst, 2008; 29(12): 1
[2] (樊丁, 林涛, 黄勇. 焊接学报, 2008; 29(12): 1
[3] Wang X X, Huang Y, Fan D, Yang L, Yan L Q. J Lanzhou Univ Technol, 2013; 39(1): 14
[3] (王新鑫, 黄勇, 樊丁, 杨磊, 晏丽琴. 兰州理工大学学报, 2013; 39(1): 14)
[4] Leng X, Zhang G, Wu L. J Phys, 2006; 39D: 1120
[5] Huang Y, Qu H Y, Fan D, Liu R L, Kang Z X, Wang X X. Trans China Weld Inst, 2013; 34(3): 33
[5] (黄 勇, 瞿怀宇, 樊 丁, 刘瑞林, 康再祥, 王新鑫. 焊接学报, 2013; 34(3): 33)
[6] Zhang G, Xiong J, Hu Y. Meas Sci Technol, 2010; 21: 105502
[7] Zhang G, Xiong J, Gao H, Wu L. J Quant Spectrosc Radiat Transfer, 2012; 113: 1938
[8] DebRoy T, Davis S A. Rev Mod Phys, 1995; 67: 85
[9] Zacharia T, David S A, Vitek J M, Kraus H G. Metall Mater Trans, 1991; 22B: 243
[10] Zacharia T, David S A, Vitek J M. Metall Mater Trans, 1991; 22B: 233
[11] Wang Y, Shi Q, Tsai H L. Metall Mater Trans, 2001; 32B: 145
[12] Zhang R H, Fan D. Sci Technol Weld Join, 2007; 12: 15
[13] Zhang W, Roy G G, Elmer J W, DebRoy T. J Appl Phys, 2003; 93: 3022
[14] Kim W H, Fan H G, Na S J. Metall Mater Trans, 1997; 28B: 679
[15] Tsai M C, Kou S. Int J Heat Mass Transfer, 1989; 33: 2089
[16] Shi Y, Guo C B, Huang J K, Fan D. Acta Phys Sin, 2011; 60: 048102
[16] (石 玗, 郭朝博, 黄健康, 樊 丁. 物理学报, 2011; 60: 048102)
[17] Choo R T C, Szekely J, Westhoff R C. Metall Mater Trans, 1992; 23B: 357
[18] Choo R T C, Szekely J, David S A. Metall Mater Trans, 1992; 23B: 371
[19] Tanaka M, Terasaki H, Ushio M, Lowke J J. Metall Mater Trans, 2002; 33A: 2043
[20] Murphy A B, Tanaka M, Yamamoto K, Tashiro S, Sato T, Lowke J J. J Phys, 2009; 42D: 194006
[21] Lei Y P, Gu X H, Shi Y W, Murakawa H. Acta Metall Sin, 2001; 37: 537
[21] (雷永平, 顾向华, 史耀武, 川村 英一. 金属学报, 2001; 37: 537)
[22] Lu F, Tang X, Yu H, Yao S. Comp Mater Sci, 2006; 35: 458
[23] Lu S P, Dong W C, Li D Z, Li Y Y. Acta Phys Sin, 2009; 58: s94
[23] (陆善平, 董文超, 李殿中, 李依依. 物理学报, 2009; 58: s94)
[24] Yin X, Gou J, Zhang J, Sun J. J Phys, 2012; 45D: 285203
[25] Mougenot J, Gonzalez J J, Freton P, Masquère M. J Phys, 2013; 46D: 135206
[26] Ogino Y, Hirata Y, Nomura K. J Phys, 2011; 44D: 215202
[27] Ding X, Li H, Yang L, Gao Y, Wei H. Int J Advan Manuf Technol, 2013; 70: 1867
[28] Kanemaru S, Sasaki T, Sato T, Mishima H, Tashiro S, Tanaka M. Quart J JWS, 2012; 30: 323
[28] (金丸周平, 佐タ木智章, 佐藤豊幸, 三島久, 田代真一, 田中学. 溶接学会论文集, 2012; 30: 323)
[29] Wang X X, Fan D, Huang J K, Huang Y. Acta Phys Sin, 2013; 62: 228101
[29] (王新鑫, 樊 丁, 黄健康, 黄 勇. 物理学报, 2013; 62: 228101)
[30] Wang X X, Fan D, Huang J K, Huang Y. J Phys, 2014; 47D: 275202
[31] Jönsson P G, Murphy A B, Szekely J. Weld J, 1995; 74(2): 48s
[32] Voller V R, Prakash C. Int J Heat Mass Transfer, 1987; 30: 1709
[33] Choo R T C, Szekely J. Weld J, 1994; 73(2): s25
[34] Hong K, Weckman D C, Strong A B, Zheng W. Sci Technol Weld Join, 2002; 7(3): 125
[35] Goodarzi M, Choo R, Toguri J M. J Phys, 1998; 31D: 569
[36] Tao W Q. Numerical Heat Transfer. 2nd Ed, Xi'an: Xi'an Jiaotong University Press, 2002: 34
[36] (陶文铨. 数值传热学. 第二版, 西安: 西安交通大学出版社, 2002: 34)
[37] Matsuda F, Ushio M, Kumagai T. Trans JWRI, 1986; 15: 13
[38] Lowke J J, Kovitya P, Schmidt H P. J Phys, 1992; 25D: 1600
[39] Bini R, Monno M, Boulos M I. J Phys, 2006; 39D: 3253
[40] Liu Z G. Master Thesis, Lanzhou University of Technology, 2013
[40] (刘自刚. 兰州理工大学硕士学位论文, 2013)
[41] Sahoo R, DebRoy T, McNallna M J. Metall Mater Trans, 1987; 19: 483
[42] Kang Z X. Master Thesis, Lanzhou University of Technology, 2012
[42] (康再祥. 兰州理工大学硕士学位论文, 2012)
[43] Wu C S. Welding Thermal Process and Molten Pool Dynamic. Beijing: Mechanical Industry Press, 2008: 123
[43] (武传松. 焊接热过程与熔池形态. 北京: 机械工业出版社, 2008: 123)
[44] Wu C S, Ushio M, Tanaka M. Comp Mater Sci, 1999; 15: 302
[45] Rai R, Roy G G, DebRoy T. J Appl Phys, 2007; 101: 054909
[46] Heberlein J, Mentel J, Pfender E. J Phys, 2010; 43D: 023001
[1] 毕中南, 秦海龙, 刘沛, 史松宜, 谢锦丽, 张继. 高温合金锻件残余应力量化表征及控制技术研究进展[J]. 金属学报, 2023, 59(9): 1144-1158.
[2] 王重阳, 韩世伟, 谢峰, 胡龙, 邓德安. 固态相变和软化效应对超高强钢焊接残余应力的影响[J]. 金属学报, 2023, 59(12): 1613-1623.
[3] 张开元, 董文超, 赵栋, 李世键, 陆善平. 固态相变对Fe-Co-Ni超高强度钢长臂梁构件焊接-淬火过程应力和变形的影响[J]. 金属学报, 2023, 59(12): 1633-1643.
[4] 周小宾, 赵占山, 汪万行, 徐建国, 岳强. 渣-金界面气泡夹带行为数值物理模拟[J]. 金属学报, 2023, 59(11): 1523-1532.
[5] 彭治强, 柳前, 郭东伟, 曾子航, 曹江海, 侯自兵. 基于大数据挖掘的连铸结晶器传热独立变化规律[J]. 金属学报, 2023, 59(10): 1389-1400.
[6] 夏大海, 邓成满, 陈子光, 李天书, 胡文彬. 金属材料局部腐蚀损伤过程的近场动力学模拟:进展与挑战[J]. 金属学报, 2022, 58(9): 1093-1107.
[7] 胡龙, 王义峰, 李索, 张超华, 邓德安. 基于SH-CCT图的Q345钢焊接接头组织与硬度预测方法研究[J]. 金属学报, 2021, 57(8): 1073-1086.
[8] 李子晗, 忻建文, 肖笑, 王欢, 华学明, 吴东升. 热导型等离子弧焊电弧物理特性和熔池动态行为[J]. 金属学报, 2021, 57(5): 693-702.
[9] 杨勇, 赫全锋. 高熵合金中的晶格畸变[J]. 金属学报, 2021, 57(4): 385-392.
[10] 潘复生, 蒋斌. 镁合金塑性加工技术发展及应用[J]. 金属学报, 2021, 57(11): 1362-1379.
[11] 唐海燕, 刘锦文, 王凯民, 肖红, 李爱武, 张家泉. 连铸中间包加热技术及其冶金功能研究进展[J]. 金属学报, 2021, 57(10): 1229-1245.
[12] 王富强, 刘伟, 王兆文. 铝电解槽中局部阴极电流增大对电解质-铝液两相流场的影响[J]. 金属学报, 2020, 56(7): 1047-1056.
[13] 刘继召, 黄鹤飞, 朱振博, 刘阿文, 李燕. 氙离子辐照后Hastelloy N合金的纳米硬度及其数值模拟[J]. 金属学报, 2020, 56(5): 753-759.
[14] 王波,沈诗怡,阮琰炜,程淑勇,彭望君,张捷宇. 冶金过程中的气液两相流模拟[J]. 金属学报, 2020, 56(4): 619-632.
[15] 许庆彦,杨聪,闫学伟,柳百成. 高温合金涡轮叶片定向凝固过程数值模拟研究进展[J]. 金属学报, 2019, 55(9): 1175-1184.