Please wait a minute...
金属学报  2015, Vol. 51 Issue (1): 114-120    DOI: 10.11900/0412.1961.2014.00400
  本期目录 | 过刊浏览 |
高熔点金属区域熔炼中晶体生长角和凝固速率对熔区稳定性的影响
李双明1(), 耿振博1, 胡锐1, 刘毅2, 罗锡明2
1 西北工业大学凝固技术国家重点实验室, 西安 710072
2 昆明贵金属研究所, 昆明 650106
EFFECT OF GROWTH ANGLE AND SOLIDIFICATION RATE ON THE FLOATING ZONE STABILITY FOR PROCESSING OF HIGH-TEMPERATURE PURE METALS
LI Shuangming1(), GENG Zhenbo1, HU Rui1, LIU Yi2, LUO Ximing2
1 State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072
2 Kunming Institute of Precious Metals, Kunming 650106
引用本文:

李双明, 耿振博, 胡锐, 刘毅, 罗锡明. 高熔点金属区域熔炼中晶体生长角和凝固速率对熔区稳定性的影响[J]. 金属学报, 2015, 51(1): 114-120.
Shuangming LI, Zhenbo GENG, Rui HU, Yi LIU, Ximing LUO. EFFECT OF GROWTH ANGLE AND SOLIDIFICATION RATE ON THE FLOATING ZONE STABILITY FOR PROCESSING OF HIGH-TEMPERATURE PURE METALS[J]. Acta Metall Sin, 2015, 51(1): 114-120.

全文: PDF(935 KB)   HTML
摘要: 

对高熔点金属Nb, W, Ta, Mo及Ir电子束区熔熔区高度进行了稳定性分析, 发现在区熔相同尺寸试样时, 能够稳定熔区高度大小排序依次为Nb>Mo>W>Ta>Ir. 计算获得了这5种金属的晶体生长角在8°~13°之间, 发现生长角不为零对大尺寸试样熔区高度起主导作用, 同时金属的实际晶体生长角与界面生长机制有关. 当为粗糙界面生长机制时, 生长角随区熔凝固速率增加变化不大; 而为位错生长机制时, 生长角随区熔凝固速率增加而减少; 如为小面生长机制时, 生长角在低速下会大幅度减小, 并随凝固速率增加而增大. 采用较大的凝固速率(约1 mm/min)有利于控制Ir和Mo晶体生长角变化和熔区高度, 这一点与Mo区熔单晶生长实验结果基本吻合.

关键词 高熔点金属电子束区熔生长角界面生长机制    
Abstract

The height of floating zone and molten zone instability for five pure metals including Nb, W, Ta, Mo, and Ir with high melting points is investigated using electron beam floating zone method (EBFZM). The results show that the height level of floating zone for these five metals are in order with the sequence of Nb>Mo>W>Ta>Ir. The crystal growth angles for these metals are in the range of 8°~13° and the sample in large size can be developed by EBFZM as the growth angle is found not to be zero. Meanwhile, the actual growth angles are related with the interface growth mechanism. For continuous growth mechanism, the growth angles vary slightly with the solidification rate for rough interface, and for dislocation growth mechanism, the growth angles decrease with increasing the solidification rate. If faceting growth mechanism prevails, the growth angles drop remarkably at a low solidification rate and further increase with increasing the solidification rate. Additionally, by employing EBFZM growth of Ir and Mo pure metals, a solidification rate approaching 1 mm/min is available for controlling the growth angle and the height of floating zone. These calculations fit well with the experimental results of Mo single crystal prepared by EBFZM.

Key wordshigh-melting point metal    electron beam floating zone method    growth angle    interface growth mechanism
    
ZTFLH:  TG292  
基金资助:* 国家自然科学基金-云南省联合基金项目资助U1202273
作者简介: null

李双明, 男, 1971年生, 教授

图1  电子束悬浮区域熔炼(EBFZM)晶体生长中向上凝固和向下凝固的熔区形状示意图
Metal r / (g·m-3) Tm / ℃ gsl / (mN·m-1) glv / (mN·m-1) a / (°) hmax / mm
Ir 20.00 2443 411 2241 10.6 8.4
Mo 9.34 2620 464 2110 12.7 11.9
Nb 7.83 2468 347 2335 8.4 13.7
Ta 15.00 2950 415 2467 9.7 10.1
W 16.20 3370 510 2676 12.0 10.2
表1  5种高熔点金属的物性参数[13,14]
图2  电子束悬浮区域熔炼下5种金属稳定生长的熔区高度与熔区半径之间的关系
图3  生长角不为零电子束悬浮区域熔炼下Mo和Ir金属稳定生长的熔区高度与熔区半径之间的关系
图4  Ir和Mo金属电子束悬浮区域熔炼下凝固速率对晶体生长角的影响
图5  不同晶体生长机制下直径30 mm的Ir和Mo金属电子束悬浮区域熔炼中凝固速率对熔区高度的影响
[1] Zee R H, Xiao Z, Chin B A, Liu J. J Mater Proc Technol, 2001; 113: 75
[2] Baars R E. Evolution of Refractory Metals and Alloys. Pennsyvania: The Minerals, Metals & Materials Society, 1994: 185
[3] Ohriner E K. Platinum Met Rev, 2008; 52: 186
[4] Verstraete M J, Christpehe C J. Appl Phys Lett, 2005; 86: 191917
[5] Glebovsky V G, Semonov V N. Int J Refractory Met Hard Mater, 1993-1994; 12: 295
[6] Glebovsky V G, Semonov V N. High Temp Mater Proc, 1995; 14: 121
[7] Hu Z W, Li Z K, Zhang Q, Zhang T J, Zhang J L, Yin T. Rare Met Mater Eng, 2007; 36: 367
[7] (胡忠武, 李中奎, 张 清, 张廷杰, 张军良, 殷 涛. 稀有金属材料与工程, 2007; 36: 367)
[8] Glebovsky V G, Semonov V N, Lomeko V V. J Crystal Growth, 1989; 98: 487
[9] Duffar T. Crystal Growth Processes Based on Capillarity. Chichester: John Wiley & Sons Ltd, 2010: 204
[10] Virozub A, Rasin I G, Brandon S. J Cryst Growth, 2008; 310: 5416
[11] Satunkin G A. J Cryst Growth, 2005; 255: 170
[12] Johns L E, Narayanan R. Interfacial Instability. New York: Springer-Verlag, Inc., 2002: 8
[13] Keene B J. Int Mater Rev, 1993; 38: 157
[14] Jiang Q, Lu H M. Surf Sci Rep, 2008; 63: 427
[15] Wang H. Master Thesis, Northwestern Polytechncial University, Xi′an, 2007: 23
[15] (王 红. 西北工业大学硕士学位论文, 西安, 2007: 23)
[16] Weinstein O, Brandon S. J Cryst Growth, 2004; 268: 299
[17] Ludge A, Riemann H, Wunscher M, Behr G, Loser W, Muiznieks A, Croll A. In: Duffar T ed., Crystal Growth Processes Based on Capillarity. Chichester: John Wiley & Sons Ltd, 2010: 203
[18] Min N B. Physical Fundamentals of Crystal Growth. Shanghai: Shanghai Science & Technology Press, 1982: 398
[18] (闵乃本. 晶体生长的物理基础. 上海: 上海科学技术出版社, 1982: 398)
[19] Zhang Q, Li Z K, Zhen Y Z, Zhang J L, Hu Z W, Zhang T J, Yin T, Ding X F, Ding X. Rare Met Mater Eng, 2005; 34: 1498
[19] (张 清, 李中奎, 郑玉柱, 张军良, 胡忠武, 张廷杰, 殷 涛, 丁学峰, 丁 旭. 稀有金属材料与工程, 2005; 34: 1498)
[20] Tiller W A. The Science of Crystallization:Microscopic Interfacial Phenomena. Cambridge: Cambridge University Press, 1991: 87
[1] 李双明, 王斌强, 刘振鹏, 钟宏, 胡锐, 刘毅, 罗锡明. 高熔点金属Ir和Mo电子束区熔中不同取向晶体的竞争生长[J]. 金属学报, 2018, 54(10): 1435-1441.