Please wait a minute...
金属学报  2015, Vol. 51 Issue (1): 40-48    DOI: 10.11900/0412.1961.2014.00363
  本期目录 | 过刊浏览 |
连续柱状晶组织CuNi10Fe1Mn合金变形行为的各向异性
刘永康1, 黄海友1,2, 谢建新1,2()
1 北京科技大学新材料技术研究院材料先进制备技术教育部重点实验室, 北京 100083
2 北京科技大学现代交通金属材料与加工技术北京实验室, 北京 100083
ANISOTROPIC DEFORMATION BEHAVIOR OF CONTINUOUS COLUMNAR-GRAINED CuNi10Fe1Mn ALLOY
LIU Yongkang1, HUANG Haiyou1,2, XIE Jianxin1,2()
1 Key Laboratory for Advanced Materials Processing of Ministry of Education, Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083
2 Beijing Laboratory of Metallic Materials and Processing for Modern Transportation, University of Science and Technology Beijing, Beijing 100083
引用本文:

刘永康, 黄海友, 谢建新. 连续柱状晶组织CuNi10Fe1Mn合金变形行为的各向异性[J]. 金属学报, 2015, 51(1): 40-48.
Yongkang LIU, Haiyou HUANG, Jianxin XIE. ANISOTROPIC DEFORMATION BEHAVIOR OF CONTINUOUS COLUMNAR-GRAINED CuNi10Fe1Mn ALLOY[J]. Acta Metall Sin, 2015, 51(1): 40-48.

全文: PDF(5160 KB)   HTML
摘要: 

研究了连续柱状晶组织CuNi10Fe1Mn合金板试样沿平行柱状晶生长方向(SD)和垂直柱状晶生长方向(PD)拉伸时的力学性能和变形行为, 讨论了连续柱状晶组织各向异性对合金力学性能和变形行为的影响. 研究结果表明: 试样沿SD和PD均具有[100]择优取向, 但沿SD所有晶粒的取向均分布于[100]附近, 平均Taylor因子m值约为2.17, 而沿PD部分晶粒的取向分散于[001]-[011]之间, 具有一定的取向分散性, m值约为2.93. 低取向分散性、无横向晶界约束等组织特征使试样沿SD变形时应力分布均匀, 各晶粒沿拉伸方向变形一致, 屈服强度和抗拉强度分别为85和215 MPa, 断后伸长率达到42%, 具有典型韧性断口; 由于存在一定的取向分散性和横向晶界, 使得PD试样变形时出现明显的晶界应力集中和表面凹凸起伏, 屈服强度明显增加, 为115 MPa, 断后伸长率下降至36%, 具有混合型断口. 连续柱状晶组织CuNi10Fe1Mn合金的晶粒取向和晶界分布的各向异性是造成变形行为各向异性的原因.

关键词 连续柱状晶Cu-Ni合金各向异性力学性能变形行为    
Abstract

In continuous unidirectional solidification process, an unidirectional heat transfer condition can be established to control grain growth direction along the solidification direction (SD). By this method, continuous columnar-grained (CCG) polycrystalline alloys without transverse grain boundary can be obtained, which possess high orientated texture and straight grain boundary morphology. High orientated texture can significantly improve the consistency among the grains, and the straight grain boundaries reduce the number of coordinated strain components, resulting in high plasticity and excellent extension behavior along the SD in the CCG alloys. For example, the CCG polycrystalline CuNi10Fe1Mn alloy has a high tensile elongation (>40%). However, as described above, the CCG polycrystalline alloy has an extremely anisotropic microstructure. In order to improve its performance, select the appropriate processing methods, and establish a reasonable process, its mechanical properties and deformation behavior were investigated with tensile direction along the SD or perpendicular to the solidification direction (PD) in this work. The electron back-scatter diffraction (EBSD) and digital image correlation (DIC) techniques were introduced to study the effects of microstructure anisotropy on the mechanical properties and deformation behavior. The results indicate that both SD and PD samples have [100] preferred orientation. All grains in SD samples (Taylor factor m=2.17) are nearby [100], while some grains in PD samples (Taylor factor m=2.93) scatter among [001]-[011]. Microstructure characteristics of low orientation dispersion and no horizontal grain boundary in SD samples contribute to the uniform stress distribution and consistent deformation behavior in each grain along the tensile direction. The yield strength, tensile strength and elongation are 85 MPa, 215 MPa and 42%, respectively. Compared to SD samples, PD samples appear to grain boundary stress concentration and zigzag surface morphologies due to the orientation dispersion and horizontal grain boundaries. As a result, the yield strength markedly increases to 115 MPa, and the elongation decreases to 36%. The SD and PD samples occur ductile and mixed fracture, respectively. The anisotropic deformation behavior of CCG polycrystalline CuNi10Fe1Mn alloy is attributed to the anisotropic grain orientation and the grain boundary distribution.

Key wordscontinuous columnar grain    Cu-Ni alloy    anisotropy    mechanical property    deformation behavior
    
ZTFLH:  TG249.7  
基金资助:* 国家科技支撑计划项目2011BAE23B00, 国家自然科学基金项目51104015和新金属材料国家重点实验室自主研究课题2012Z-12资助
作者简介: null

刘永康, 男, 1989年生, 硕士生

图1  定向凝固连续柱状晶CuNi10Fe1Mn合金的OM像和XRD谱
图2  SD和PD试样的室温拉伸应力-应变曲线
图3  拉伸试样断后试样表面的OM像和断口形貌SEM像
图4  试样在拉伸过程中全场应变分布云图和沿试样轴向中心线的应变分布
图5  SD和PD试样在不同拉伸阶段所对应的轴向局部应变的最大值及最大值与最小值的差值
图6  连续柱状晶组织CuNi10Fe1Mn合金沿SD和PD方向的反极图和等Schmid因子分布线图
图7  拉伸试样在应变15%时的OM像和EBSD取向图
Grain Actual angle Theoretical angle Activated slip system Schmid factor
SD-grain 1 43°±1° 45.0° a, b, c, d 0.41
39°±1° 45.0° a, b, c, d 0.41
SD-grain 2 36°±1° 36.2° c 0.41
57°±1° 55.5° a 0.41
63°±2° 63.1° d 0.41
SD-grain 3 44°±1° 47.4° c 0.46, 0.39, 0.08
PD-grain 1 38°±1° 40.4° b, d 0.41
51°±1° 51.9° a, c 0.41
PD-grain 2 49°±1° 51.7° b, c 0.49, 0.33, 0.16
PD-grain 3 49°±1° 48.5° b, c 0.46, 0.39, 0.07
38°±1° 40.3° a, d 0.39, 0.34, 0.05
PD-grain 4 49°±1° 52.1° b 0.49, 0.24
52°±1° 54.9° c 0.49, 0.24
PD-grain 5 51°±1° 45.0° a, b, c, d 0.41
46°±2° 45.0° a, b, c, d 0.41
表1  拉伸试样在应变15%时晶粒内滑移线和拉伸轴之间的夹角及Schmid因子值
[1] Ohno A, Soda H, McLean A, Yamazaki H. Adv Mater, 1990; 28: 161
[2] Onaka S, Kato H, Hashimoto S, Miura S. J Jpn Inst Met, 1995; 59: 607
[3] Zhang Z M, Lü T, Xu C J, Guo X F. Acta Metall Sin (Engl Lett), 2008; 21: 275
[4] Ji D P, Liu X F, Xie J X, Yu J W, Li W H, Rong M L. Acta Metall Sin, 2006; 42: 1243
[4] (季灯平, 刘雪峰, 谢建新, 余均武, 李卫河, 荣鸣雷. 金属学报, 2006; 42: 1243)
[5] Wang Y, Huang H Y, Xie J X. Mater Sci Eng, 2011; A530: 418
[6] Xie J X, Wang Y, Huang H Y. Chin J Nonferrous Met, 2011; 21: 2324
[6] (谢建新, 王 宇, 黄海友. 中国有色金属学报, 2011; 21: 2324)
[7] Gao K W, Liu M Y, Zou F L, Pang X L, Xie J X. Mater Sci Eng, 2010; A527: 4750
[8] Gan C L, Liu X F, Huang H Y, Xie J X. Mater Sci Eng, 2013; A579: 202
[9] Zhang H, Xie J X, Wang Z D. J Univ Sci Technol Beijing (Engl Ed), 2004; 11: 240
[10] Gan C L, Liu X F, Huang H Y, Xie J X. Acta Metall Sin, 2010; 46: 1549
[10] (甘春雷, 刘雪峰, 黄海友, 谢建新. 金属学报, 2010; 46: 1549)
[11] Mei J, Liu X H, Jiang Y B, Xie J X. Chin J Nonferrous Met, 2012; 22: 2529
[11] (梅 俊, 刘新华, 姜雁斌, 谢建新. 中国有色金属学报, 2012; 22: 2529)
[12] Xie J X, Lou H F, Wang Z D, Hu P X, Zhang H, Dong Y Z, Kang J L, Miao G W, Fu X Z, Yan M, Guan B H, Jiang X L. Chin Pat, 200710065281.9, 2007
[12] (谢建新, 娄花芬, 王自东, 胡萍霞, 张 鸿, 董亚正, 康敬乐, 苗国伟, 符学智, 闫 敏, 关保红, 蒋小亮. 中国专利, 200710065281.9, 2007)
[13] Xie J X, Mei J, Liu X H, Liu X F. Chin Pat, 201010501407.4, 2011
[13] (谢建新, 梅 俊, 刘新华, 刘雪峰. 中国专利, 201010501407.4, 2011)
[14] Mei J, Liu X H, Xie J X. Int J Min Met Mater, 2012; 19: 339
[15] Fu Y B, Yan Z M, Li T J, Chen P, Cheng Y F, Yin G M. Mater Des, 2009; 30: 4478
[16] Li X T, Guo Z X, Zhao X W, Wei B, Chen F B, Li T J. Foundry, 2007; 56: 691
[16] (李新涛, 郭照相, 赵祥伟, 魏 笔, 陈风宝, 李廷举. 铸造, 2007; 56: 691)
[17] Daly S, Ravichandran G, Bhattacharya K. Acta Mater, 2007; 55: 3593
[18] Efstathiou C, Sehitoglu H, Carroll J, Lambros J, Maier H J. Acta Mater, 2008; 56: 3791
[19] Morgeneyer T F, Taillandier-Thomas T, Helfen L, Baumbach T, Sinclair I, Roux S, Hild F. Acta Mater, 2008; 69: 78
[20] Zou F L, Gao K W, Zhu Q F, Xie J X. Acta Metall Sin, 2008; 44: 297
[20] (邹风雷, 高克玮, 朱其芳, 谢建新. 金属学报, 2008; 44: 297)
[21] Bradley A J, Cox W F, Goldschmidt H J. J Inst Met, 1941; 67: 189
[22] DKI German Copper Institute Booklet<uri>http://www.copper.org/applications/marine/cuni/txt_DKI, 2010</uri>
[23] Courtney T H. Mechanical Behavior of Materials. 2nd Ed, New York: McGraw-Hill Companies Inc., 2000: 159
[24] Li X T, Zhao X W, Wei B, Chen F B, Yan Z M, Li T J. Chin J Nonferr Met, 2007; 17: 922
[24] (李新涛, 赵祥伟, 魏 笔, 陈凤宝, 阎志明, 李廷举. 中国有色金属学报, 2007; 17: 922)
[25] Zaefferer S, Kuo J C, Zhao Z, Winning M, Raabe D. Acta Mater, 2003; 51: 4719
[1] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[2] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[3] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[4] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[5] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[6] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[7] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[8] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[9] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[10] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[11] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[12] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[13] 吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜. Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展[J]. 金属学报, 2023, 59(4): 502-512.
[14] 李述军, 侯文韬, 郝玉琳, 杨锐. 3D打印医用钛合金多孔材料力学性能研究进展[J]. 金属学报, 2023, 59(4): 478-488.
[15] 王虎, 赵琳, 彭云, 蔡啸涛, 田志凌. 激光熔化沉积TiB2 增强TiAl基合金涂层的组织及力学性能[J]. 金属学报, 2023, 59(2): 226-236.