Please wait a minute...
金属学报  2015, Vol. 51 Issue (3): 289-297    DOI: 10.11900/0412.1961.2014.00348
  本期目录 | 过刊浏览 |
预变形对汽车用Al-Mg-Si-Cu合金析出行为的影响
崔莉, 郭明星(), 彭祥阳, 张艳, 张济山, 庄林忠
北京科技大学新金属材料国家重点实验室, 北京 100083
INFLUENCE OF PRE-DEFORMATION ON THE PRECIP- ITATION BEHAVIORS OF Al-Mg-Si-Cu ALLOY FOR AUTOMOTIVE APPLICATION
CUI Li, GUO Mingxing(), PENG Xiangyang, ZHANG Yan, ZHANG Jishan, ZHUANG Linzhong
State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing,Beijing 100083
引用本文:

崔莉, 郭明星, 彭祥阳, 张艳, 张济山, 庄林忠. 预变形对汽车用Al-Mg-Si-Cu合金析出行为的影响[J]. 金属学报, 2015, 51(3): 289-297.
Li CUI, Mingxing GUO, Xiangyang PENG, Yan ZHANG, Jishan ZHANG, Linzhong ZHUANG. INFLUENCE OF PRE-DEFORMATION ON THE PRECIP- ITATION BEHAVIORS OF Al-Mg-Si-Cu ALLOY FOR AUTOMOTIVE APPLICATION[J]. Acta Metall Sin, 2015, 51(3): 289-297.

全文: PDF(1795 KB)   HTML
摘要: 

采用力学性能测试、DSC及TEM研究了预变形对Al-Mg-Si-Cu合金析出行为的影响. 结果表明, 在慢速率升温过程中, 预时效态合金GP区溶解速率均随预变形量的增加而降低, 利用Avrami-Johnson-Mehl方法求得经0, 5%和15%预变形后合金的GP区溶解激活能分别为137.1, 189.5和141.3 kJ/mol; 若合金经不同预变形后直接进行185 ℃, 20 min烤漆硬化, 预变形可有效促进沉淀相析出, 提高烤漆硬化增量, 最高达160 MPa, 不过预变形量大于10%时合金烤漆硬化增幅减缓; 此外, 经预变形处理后烤漆态合金的GP区溶解速率在一定温度下均较低, 但高于某一温度后, 相应的GP区溶解速率均高于未经预变形处理, 最终获得的ln[(dY/dT)φ/f(Y)]-1/T曲线甚至会出现高激活能向低激活能转化现象; 不过随预变形量增加, β′′相析出激活能不断降低, 析出速率不断增加.

关键词 Al-Mg-Si-Cu合金汽车板预时效预变形动力学    
Abstract

To reduce the weight of car body, Al-Mg-Si-Cu alloys have been widely used to produce outer body panels of automobiles due to their favorable high strength-to-weight ratio, corrosion resistance, weldability and good formability. Al-Mg-Si-Cu alloys belong to age-hardenable aluminium alloys, whose strength derives mainly from the matrix precipitation during aging treatments. However, their bake hardening response still need to be further improved to enhance their dent resistance. A novel thermo-mechanical treatment consisting of conventional pre-aging, pre-deformation and re-aging was developed to enhance the tensile properties and bake hardening increment of Al-Mg-Si-Cu alloys. In this work, the effect of pre-deformation on the precipitation behaviors of Al-Mg-Si-Cu alloy was studied by DSC, mechanical property measurement and TEM. The results show that, the GP zone dissolution rate decreases with increasing pre-deformation during the slow heating up process for the pre-aged alloy, the corresponding activation energies of 0, 5% and 15% pre-deformed alloy calculated by Avrami-Johnson-Mehl method are 137.1, 189.5 and 141.3 kJ/mol, respectively. If the pre-deformed alloys are directly bake hardened at 185 ℃ for 20 min, precipitation and bake hardening increment can be greatly improved by pre-deformation (the highest bake hardening increment is 160 MPa), but the bake hardening increment rate gradually decreases if the pre-deformation is above 10%. In addition, the GP zone dissolution rates of pre-deformed alloys after bake hardening treatment are much lower when the heat treatment temperatures are below one certain value, but if the treatment temperatures above it, the corresponding GP zone dissolution rates are higher than that of alloy without pre-deformation, finally, the activation energy changes from high value to low value even can be observed in the ln[(dY/dT)φ/f(Y)]-1/T curve. For the precipitation in the alloys, with increasing pre-deformation, its activation energy gradually decreases, corresponding gradually increase of precipitation rate.

Key wordsAl-Mg-Si-Cu alloy    automotive sheet    pre-aging    pre-deformation    kinetics
    
ZTFLH:  TG166  
基金资助:* 国家高技术研究发展计划项目2013AA032403, 国家自然科学基金项目51301016, 中央高校基本科研业务费项目FRF-TP-14-097A2以及北京市青年“英才”计划项目YETP0409资助
作者简介: null

崔莉, 女, 1988年生, 硕士生

图1  T4P态Al-0.6Mg-0.9Si-0.2Cu-0.07Mn合金经不同预变形后的DSC曲线
图2  T4P态Al-0.6Mg-0.9Si-0.2Cu-0.07Mn合金GP区溶解激活能计算过程及其理论预测
图3  T4P态Al-0.6Mg-0.9Si-0.2Cu-0.07Mn合金及其经不同预变形+185 ℃, 20 min烤漆后的应力-应变曲线
图4  Al-0.6Mg-0.9Si-0.2Cu-0.07Mn合金经烤漆处理后的DSC曲线
图5  Al-0.6Mg-0.9Si-0.2Cu-0.07Mn合金经烤漆处理后所获DSC曲线中GP区溶解激活能计算过程
图6  Al-0.6Mg-0.9Si-0.2Cu-0.07Mn合金经烤漆处理后所获DSC曲线中 β″相析出激活能计算过程
Peak of GP and β Q
(kJmol-1)
k0
min-1
Kinetics expression
GP zone dissolution for the (T4P+BH) 128.0 2.9×1013 Y=1-exp[-2.9×1013exp(-15401/T)t]
GP zone dissolution for the (T4P+5%+BH) 133.8 1.4×1014 Y=1-exp[-(1.4×1014exp(-16103/T)t)1.5]
GP zone dissolution for the (T4P+15%+BH) 97.0 2.2×1010 Y=1-exp[-(2.2×1010exp(-11664/T)t)1.8]
β precipitation for the (T4P+BH) 176.9 5.2×1017 Y=1-exp[-(5.2×1017exp(-21285/T)t)2]
β precipitation for the (T4P+5%+BH) 164.9 3.5×1016 Y=1-exp[-(3.5×1016exp(-19842/T)t)2]
β precipitation for the (T4P+15%+BH) 127.1 5.3×1012 Y=1-exp[-(5.3×1012exp(-15321/T)t)2]
  
图7  Al-0.6Mg-0.9Si-0.2Cu-0.07Mn合金经烤漆处理后在185 ℃继续时效的析出动力学
图8  不同预变形量下Al-0.6Mg-0.9Si-0.2Cu-0.07Mn合金经185 ℃, 20 min烤漆处理后以10 ℃/min升温速率从20 ℃升温到250 ℃时的TEM像
[1] Birol Y. Mater Sci Eng, 2005; A391: 175
[2] Roven H J, Liu M P, Werenskiold J C. Mater Sci Eng, 2008; A483: 54
[3] Esmaeili S, Wang X, Lloyd D J, Poole W J. Metall Mater Trans, 2003; 34A: 751
[4] Shen C H. J Mater Sci Technol, 2011; 27: 205
[5] Esmaeili S, Lloyd D J, Poole W J. Mater Lett, 2005; 59: 575
[6] Shen C H, Ou B L. J Chin Inst Eng, 2008; 31: 181
[7] Staab T E M, Krause-rehberg R. J Mater Sci, 2006; 41: 1059
[8] Gupta A K, Lloyd D J, Court S A. Mater Sci Eng, 2001; A301: 140
[9] He L Z, Zhang H T, Cui J Z. J Mater Sci Technol, 2010; 26: 141
[10] Han Y, Ma K, Li L, Chen W, Nagaumi H. Mater Des, 2012; 39: 418
[11] Cai M, Field D P, Lorimer G W. Mater Sci Eng, 2004; A373: 65
[12] Gupta A K, Jena A K, Chaturvedi M C. Scr Metall, 1988; 22: 369
[13] Jena A K, Gupta A K, Chaturvedi M C. Acta Metall, 1989; 37: 885
[14] Ghosh K S, Gao N. Trans Nonferrous Met Soc China, 2011; 21: 1199
[15] Ghosh K S, Das K, Chatterjee U K. Mater Sci Technol, 2004; 20: 825
[16] Oguocha I N A, Yannacopoulos S. Mater Sci Eng, 1997; A231: 25
[17] Gupta A K, Marois P H, Lloyd D J. Mater Sci Forum, 1996; 217: 801
[18] Gupta A K, Lloyd D J. Metall Mater Trans, 1999; 30A: 879
[19] Luo A, Lloyd D J, Gupta A, Youdelis W V. Acta Metall Mater, 1993; 41: 769
[20] Zhang Q X, Guo M X, Hu X Q, Cao L Y, Zhuang L Z, Zhang J S.Acta Metall Sin, 2013; 49: 1604
[20] (张巧霞, 郭明星, 胡晓倩, 曹零勇, 庄林忠, 张济山. 金属学报, 2013; 49: 1604)
[21] Edwards G A, Stiller K, Dunlop G L, Couper M J. Acta Mater, 1998; 46: 3893
[22] De Geuser F, Lefebvre W, Blavette D. Philos Mag Lett, 2006; 86: 227
[23] Bryant J D. Metall Mater Trans, 1999; 30A: 1999
[24] Brandes E A, Brook G B. Smithells Metals Reference Book. 7th Ed., Bath: Reed Educational and Professional Publishing Ltd., 1992: 73
[25] Sha G, Möller H, Stumpf W E, Xia J H, Govender G, Ringer S P. Acta Mater, 2012; 60 : 692
[26] Hirata T, Matsuo S. Trans Nat Res Inst Met, 1973; 15: 271
[1] 刘兴军, 魏振帮, 卢勇, 韩佳甲, 施荣沛, 王翠萍. 新型钴基与Nb-Si基高温合金扩散动力学研究进展[J]. 金属学报, 2023, 59(8): 969-985.
[2] 王长胜, 付华栋, 张洪涛, 谢建新. 冷轧变形对高性能Cu-Ni-Si合金组织性能与析出行为的影响[J]. 金属学报, 2023, 59(5): 585-598.
[3] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[4] 张月鑫, 王举金, 杨文, 张立峰. 冷却速率对管线钢中非金属夹杂物成分演变的影响[J]. 金属学报, 2023, 59(12): 1603-1612.
[5] 李赛, 杨泽南, 张弛, 杨志刚. 珠光体-奥氏体相变中扩散通道的相场法研究[J]. 金属学报, 2023, 59(10): 1376-1388.
[6] 杜宗罡, 徐涛, 李宁, 李文生, 邢钢, 巨璐, 赵利华, 吴华, 田育成. Ni-Ir/Al2O3 负载型催化剂的制备及其用于水合肼分解制氢性能[J]. 金属学报, 2023, 59(10): 1335-1345.
[7] 夏大海, 邓成满, 陈子光, 李天书, 胡文彬. 金属材料局部腐蚀损伤过程的近场动力学模拟:进展与挑战[J]. 金属学报, 2022, 58(9): 1093-1107.
[8] 郭璐, 朱乾科, 陈哲, 张克维, 姜勇. Fe76Ga5Ge5B6P7Cu1 合金的非等温晶化动力学[J]. 金属学报, 2022, 58(6): 799-806.
[9] 任平, 陈兴品, 王存宇, 俞峰, 曹文全. 预变形和双级时效对Fe-30Mn-11Al-1.2C奥氏体低密度钢显微组织和力学性能的影响[J]. 金属学报, 2022, 58(6): 771-780.
[10] 王江伟, 陈映彬, 祝祺, 洪哲, 张泽. 金属材料的晶界塑性变形机制[J]. 金属学报, 2022, 58(6): 726-745.
[11] 唐帅, 蓝慧芳, 段磊, 金剑锋, 李建平, 刘振宇, 王国栋. 铁素体区等温过程中Ti-Mo-Cu微合金钢中的共析出行为[J]. 金属学报, 2022, 58(3): 355-364.
[12] 李海勇, 李赛毅. Al <111>对称倾斜晶界迁移行为温度相关性的分子动力学研究[J]. 金属学报, 2022, 58(2): 250-256.
[13] 刘曼, 胡海江, 田俊羽, 徐光. 变形对超高强贝氏体钢组织和力学性能的影响[J]. 金属学报, 2021, 57(6): 749-756.
[14] 许坤, 王海川, 孔辉, 吴朝阳, 张战. 一种新分组团簇动力学模型模拟铝合金中的Al3Sc析出[J]. 金属学报, 2021, 57(6): 822-830.
[15] 戴进财, 闵小华, 周克松, 姚凯, 王伟强. 预变形与等温时效耦合作用下Ti-10Mo-1Fe/3Fe层状合金的力学性能[J]. 金属学报, 2021, 57(6): 767-779.