Please wait a minute...
金属学报  2015, Vol. 51 Issue (3): 272-280    DOI: 10.11900/0412.1961.2014.00347
  本期目录 | 过刊浏览 |
低频电磁搅拌对半固态铝合金中稀土分布的影响
刘政1(), 刘小梅1, 朱涛1, 谌庆春2
1 江西理工大学机电工程学院, 赣州 341000
2 江西理工大学材料科学与工程学院, 赣州 341000
EFFECTS OF ELECTROMAGNETIC STIRRING WITH LOW CURRENT FREQUENCY ON RE DISTRIBUTION IN SEMISOLID ALUMINUM ALLOY
LIU Zheng1(), LIU Xiaomei1, ZHU Tao1, CHEN Qingchun2
1 School of Mechanical and Electrical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000
2 School of Material Science and Engineering, Jiangxi University of Science and Technology, Ganzhou 341000
引用本文:

刘政, 刘小梅, 朱涛, 谌庆春. 低频电磁搅拌对半固态铝合金中稀土分布的影响[J]. 金属学报, 2015, 51(3): 272-280.
Zheng LIU, Xiaomei LIU, Tao ZHU, Qingchun CHEN. EFFECTS OF ELECTROMAGNETIC STIRRING WITH LOW CURRENT FREQUENCY ON RE DISTRIBUTION IN SEMISOLID ALUMINUM ALLOY[J]. Acta Metall Sin, 2015, 51(3): 272-280.

全文: PDF(6085 KB)   HTML
摘要: 

应用Maxwell 2D软件模拟了电磁结晶器中磁感应强度及其随电流频率的变化规律, 研究了低频率电磁搅拌下A356-Y合金中RE在合金熔体中的分布规律以及对合金凝固组织的影响. 结果表明, 在工频以下的低频率段, 通过数值模拟获得了磁感应强度较强的电流频率; 在这个电流频率下, 利用电磁搅拌制备了半固态A356-Y合金浆料, 其中初生相的等积圆直径和形状因子分别达到65 mm以下和0.80以上, 可满足半固态流变成形的要求; 稀土Y在电磁场的驱动下, 其分布沿着铸锭的半径趋于边缘富集, 但受电流频率的影响; 在所研究的范围内, 随电流频率增大, 稀土Y趋向铸锭边缘富集.

关键词 铝合金电磁搅拌电流频率半固态稀土    
Abstract

When solidification of Al alloy melt was disturbed by electromagnetic field, its microstructure and properties were influenced by the diffusion and distribution of the solute and refinement in the melt. So it was necessary to study the metallurgical behavior of RE with electromagnetic stirring and to probe its diffusion and distribution under the forced convection in the melt. The magnetic induction intensity in the electromagnetic crystallizer and its variations with current frequency were simulated by Maxwell 2D software. The distribution of RE in the A356-Y alloy melt and its effect to the microstructure were studied with low frequency electromagnetic stirring. The results indicated that current frequency with stronger magnetic induction could be obtained during the range of low frequency under the working frequency. The slurry of semisolid A356-Y alloy was prepared by electromagnetic stirring at the frequency. The size and shape factor of the primary phase in the alloy were below 65 mm and above 0.80, respectively, which could satisfy the requirement of semisolid alloy rheoforming. The distribution of Y enriched at the edge of the ingot along its radius direction by the driving of electromagnetic field, but was effected by the frequency. Y presented the enriching at the edge of the ingot with the increase of the frequency under the range of the frequency tested.

Key wordsaluminum alloy    electromagnetic stirring    current frequency    semisolid    rare earth
    
ZTFLH:  TG146  
基金资助:*国家自然科学基金项目51361012, 江西省自然科学基金项目20114bab206014和江西省教育厅科技项目GJJ14407资助
作者简介: null

刘 政, 男, 1958年生, 教授, 博士

图1  电磁结晶器电磁场发生器模型和网格图
图2  不同电流频率下电磁结晶器中磁力线的分布
图3  不同电流频率下电磁结晶器中磁感应强度的分布
图4  电磁搅拌前后半固态A356-Y合金初生a相形貌
图5  不同电流频率下A356-Y合金初生a 相的平均等积圆直径D和平均形状因子F
图6  不同电流频率搅拌下A356-Y铝合金的SEM-BE像
图7  不同电流频率搅拌下铸锭径向RE元素的分布情况
[1] Li T J, Wen B, Zhang Z F, Jin J Z. J Dalian Univ Technol, 2000; 40(s1): 61
[1] (李廷举, 温 斌, 张志峰, 金俊泽. 大连理工大学学报, 2000; 40(增刊1): 61)
[2] Bai Y F, Zhou Y M, Yan B, Zhang Y J, Xu D M, Guo J J, Fu H Z. Foundry, 2008; 57: 105
[2] (白云峰, 周月明, 严 彪, 张永杰, 徐达鸣, 郭景杰, 傅恒志. 铸造, 2008; 57: 105)
[3] Barman N, Kumar P, Dutta P. J Mater Process Technol, 2009; 209: 5912
[4] Liu Z, Hu Y M, Liu X M. Acta Metall Sin (Engl Lett), 2010; 23: 277
[5] Maja V, Stanislav K, Primo M, Jožef M. J Alloys Compd, 2011; 509: 7349
[6] Wan D Q. Rare Met, 2010; 29: 460
[7] Nogita K, Yasuda H, Yoshiya M. J Alloys Compd, 2010; 489: 415
[8] Kaur P, Dwivedi D K, Pathak P M. Int J Adv Manuf Technol, 2012; 58: 219
[9] Yurko J A. Die Cast Eng, 2002; (4): 20
[10] Mao W M, Bai Y L, Tang G X. J Mater Sci Technol, 2006; 22: 447
[11] Zuo Y B, Zhao Z H, Zhu Q F, Cui J Z. Chin J Nonferrous Met, 2013; 23: 51
[11] (左玉波, 赵志浩, 朱庆丰, 崔建忠. 中国有色金属学报, 2013; 23: 51)
[12] Liu Z, Mao W M, Zhao Z D. Trans Nonferrous Met Soc China, 2006; 16: 71
[13] Liu Z, Mao W M, Zhao Z D. Acta Metall Sin, 2009; 45: 507
[13] (刘 政, 毛卫民, 赵振铎. 金属学报, 2009; 45: 507)
[14] Liu Z, Wang F Y, Cao K, Xu H B, Huang M Y. Adv Mater Res, 2012; 430-432: 886
[15] Yao C F, Guo X P, Guo H S. Acta Metall Sin, 2008; 44: 579
[15] (姚成方, 郭喜平, 郭海生. 金属学报, 2008; 44: 579)
[16] Prodhan A, Sivaramakrishnan C S, Chakrabarti A K. Metall Mater Trans, 2001; 32B: 372
[17] Dao V L, Zhao S D, Lin W J. J Mech Eng, 2012; 48(14): 50
[17] (陶文琉, 赵升吨, 林文捷. 机械工程学报, 2012; 48(14): 50)
[18] Zhang B J, Cui J Z, Lu G M, Zhang Q, Ban C Y. Acta Metall Sin, 2002; 38: 215
[18] (张北江, 崔建忠, 路贵民, 张 勤, 班春燕. 金属学报, 2002; 38: 215)
[19] Barman N, Dutta P. Trans Indian Inst Met, 2009; 62: 469
[20] Chen D D, Zhang H T, Wang X J, Cui J Z. Acta Metall Sin, 2011; 47: 185
[20] (陈丹丹, 张海涛, 王向杰, 崔建中. 金属学报, 2011; 47: 185)
[21] Vives C. Metall Trans, 1992; 23B: 189
[22] Chen X R, Zhang Z F, Xu J, Shi L K. Chin J Nonferrous Met, 2010; 20: 937
[22] (陈兴润, 张志峰, 徐 骏, 石力开. 中国有色金属学报, 2010; 20: 937)
[23] Yang M S, Zhao A M, Mao W M, Gao J F, Zhong X Y. J Iron Steel Res, 2003; 15(4): 18
[23] (杨卯生, 赵爱民, 毛卫民, 高军芳, 钟雪友. 钢铁研究学报, 2003; 15(4): 18)
[24] Takamichi I,Roderick I L G. The Physical Properties of Liquid Metals. New York: Oxford University Press Inc., 1988: 255
[25] Sun Q X, Zhong Y B, Ren Z M, Lou L, Deng K, Xu K D. Acta Metall Sin, 2005; 41: 321
[25] (孙秋霞, 钟云波, 任忠鸣, 楼 磊, 邓 康, 徐匡迪. 金属学报, 2005; 41: 321)
[26] Kang C G, Bae J W, Kim B M. J Mater Process Technol, 2007; 187-188: 344
[27] Willers B, Eckert S, Nikrityuk P A, Rabiger D, Dong J, Eckert K, Gerbeth G. Metall Mater Trans, 2008; 39B: 304
[28] Chung I G, Bolouri A, Kang C G. Int J Adv Manuf Technol, 2012; 58: 237
[29] Meng X H, Chen C L, Hong Z Y, Wang J Y. Sci China, 2006; 49E: 274
[30] Kaur P, Dwivedi D K, Pathak P M. Int J Adv Manuf Technol, 2012; 63: 415
[1] 王宗谱, 王卫国, Rohrer Gregory S, 陈松, 洪丽华, 林燕, 冯小铮, 任帅, 周邦新. 不同温度轧制Al-Zn-Mg-Cu合金再结晶后的{111}/{111}近奇异晶界[J]. 金属学报, 2023, 59(7): 947-960.
[2] 王京阳, 孙鲁超, 罗颐秀, 田志林, 任孝旻, 张洁. 以抗CMAS腐蚀为目标的稀土硅酸盐环境障涂层高熵化设计与性能提升[J]. 金属学报, 2023, 59(4): 523-536.
[3] 夏大海, 计元元, 毛英畅, 邓成满, 祝钰, 胡文彬. 2024铝合金在模拟动态海水/大气界面环境中的局部腐蚀机制[J]. 金属学报, 2023, 59(2): 297-308.
[4] 高建宝, 李志诚, 刘佳, 张金良, 宋波, 张利军. 计算辅助高性能增材制造铝合金开发的研究现状与展望[J]. 金属学报, 2023, 59(1): 87-105.
[5] 马志民, 邓运来, 刘佳, 刘胜胆, 刘洪雷. 淬火速率对7136铝合金应力腐蚀开裂敏感性的影响[J]. 金属学报, 2022, 58(9): 1118-1128.
[6] 杨天野, 崔丽, 贺定勇, 黄晖. 选区激光熔化AlSi10Mg-Er-Zr合金微观组织及力学性能强化[J]. 金属学报, 2022, 58(9): 1108-1117.
[7] 宋文硕, 宋竹满, 罗雪梅, 张广平, 张滨. 粗糙表面高强铝合金导线疲劳寿命预测[J]. 金属学报, 2022, 58(8): 1035-1043.
[8] 王春辉, 杨光昱, 阿热达克·阿力玛斯, 李晓刚, 介万奇. 砂型3DP打印参数对ZL205A合金铸造性能的影响[J]. 金属学报, 2022, 58(7): 921-931.
[9] 高川, 邓运来, 王冯权, 郭晓斌. 蠕变时效对欠时效7075铝合金力学性能的影响[J]. 金属学报, 2022, 58(6): 746-759.
[10] 田妮, 石旭, 刘威, 刘春城, 赵刚, 左良. 预拉伸变形对欠时效7N01铝合金板材疲劳断裂的影响[J]. 金属学报, 2022, 58(6): 760-770.
[11] 李民, 李昊泽, 王继杰, 马颖澈, 刘奎. 稀土Ce对薄带连铸无取向6.5%Si钢组织、高温拉伸性能和断裂模式的影响[J]. 金属学报, 2022, 58(5): 637-648.
[12] 刘洁, 徐乐, 史超, 杨少朋, 何肖飞, 王毛球, 时捷. 稀土Ce对非调质钢中硫化物特征及微观组织的影响[J]. 金属学报, 2022, 58(3): 365-374.
[13] 苏凯新, 张继旺, 张艳斌, 闫涛, 李行, 纪东东. 微弧氧化6082-T6铝合金的高周疲劳性能及残余应力松弛机理[J]. 金属学报, 2022, 58(3): 334-344.
[14] 王冠杰, 李开旗, 彭力宇, 张壹铭, 周健, 孙志梅. 高通量自动流程集成计算与数据管理智能平台及其在合金设计中的应用[J]. 金属学报, 2022, 58(1): 75-88.
[15] 刘仲武, 何家毅. 钕铁硼永磁晶界扩散技术和理论发展的几个问题[J]. 金属学报, 2021, 57(9): 1155-1170.