Please wait a minute...
金属学报  2014, Vol. 50 Issue (12): 1437-1445    DOI: 10.11900/0412.1961.2014.00311
  论文 本期目录 | 过刊浏览 |
升温速率对低碳无取向电工钢脱碳退火组织及织构的影响
夏冬生, 杨平, 谢利, 毛卫民
北京科技大学材料科学与工程学院, 北京 100083
INFLUENCE OF HEATING RATE ON THE DECARBU- RIZED ANNEALING MICROSTRUCTURE AND TEXTURE IN LOW-CARBON NON-ORIENTED ELECTRICAL STEEL
XIA Dongsheng, YANG Ping, XIE Li, MAO Weimin
School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083
全文: PDF(8100 KB)   HTML
摘要: 研究了不同升温速率下低碳电工钢两相区脱碳退火组织与织构的演变规律. 结果表明, 脱碳退火升温速率对最终组织和织构均有显著影响: 升温速率决定了柱状晶的“形核”位置, 慢速升温时, 柱状晶“晶核”在表层向里的一定范围内形成, 最终在样品表面附近形成小尺寸晶粒层, 而快速升温则形成完整的柱状晶组织; 慢速升温时获得强g线织构及相对较弱的a线织构, 而快速升温则使g线织构大幅度减弱, a线组分有所增强, 并产生了一定强度的{001}<120>织构. 实验结果证明, 最终的脱碳退火织构主要取决于“形核”处再结晶晶粒的织构成分.
关键词 电工钢柱状晶组织织构升温速率    
Abstract:The present work investigates the effect of heating rate on the evolution of decarburized microstructures and textures in low-carbon electrical steels within the inter-critical temperature region. The results show that heating rate has a significant effect on both the final microstructures and textures during the process of decarburization annealing. The ''nucleation'' sites of columnar grains are determined by the heating rate. Slow heating rate would have the ''nuclei'' formed within a certain range of the surface layer, and finally leading to a fine-grained layer near the sample surface. By comparison, a complete columnar microstructure is acquired under the rapid heating condition. Strong g-fiber and relatively weak a-fiber components were obtained at the slow heating rate. In contrast, g-fiber texture is greatly weakened and a-fiber component slightly strengthened under the rapid heating condition, and a relatively strong {001}<120> texture is formed at the same time. The experimental results prove that the final decarburized textures are mainly dependent upon the texture component of recrystallized grains in the ''nucleation'' sites.
Key wordselectrical steel    columnar grain    microstructure    texture    heating rate
     出版日期: 2014-12-25
基金资助:* 国家自然科学基金资助项目 51071024
Corresponding author: Correspondent: YANG Ping, professor, Tel: (010)82376968, E-mail: yangp@mater.ustb.edu.cn   
作者简介: 夏冬生, 男, 1989年生, 硕士生

引用本文:

夏冬生, 杨平, 谢利, 毛卫民. 升温速率对低碳无取向电工钢脱碳退火组织及织构的影响[J]. 金属学报, 2014, 50(12): 1437-1445.
XIA Dongsheng, YANG Ping, XIE Li, MAO Weimin. INFLUENCE OF HEATING RATE ON THE DECARBU- RIZED ANNEALING MICROSTRUCTURE AND TEXTURE IN LOW-CARBON NON-ORIENTED ELECTRICAL STEEL. Acta Metall Sin, 2014, 50(12): 1437-1445.

链接本文:

http://www.ams.org.cn/CN/10.11900/0412.1961.2014.00311      或      http://www.ams.org.cn/CN/Y2014/V50/I12/1437

图1  实验工艺路线图
图2  低碳电工钢在不同工艺条件下的脱碳退火组织
图3  不同升温速率下脱碳退火样品的EBSD图及相应的φ2=45°截面取向分布函数(ODF)图
图4  不同升温速率下样品表层的再结晶织构统计
图5  慢速升温下的部分再结晶组织
图6  不同升温速率下样品内部的温度分布曲线示意图
图7  不同升温速率下的相关织构的统计
图8  H2DA2冷轧板部分再结晶及相应脱碳退火后的EBSD图、极图及φ2=45°截面ODF图
[1] He Z Z, Zhao Y, Luo H W. Electrical Steels. Beijing: Metallurgical Industry Press, 2012: 187 (何忠治, 赵 宇, 罗海文. 电工钢. 北京: 冶金工业出版社, 2012: 187)
[2] Park J T, Szpunar J A, Cha S Y. ISIJ Int, 2003; 43: 1611
[3] Tomida T, Tanaka T. ISIJ Int, 1995; 35: 548
[4] Tomida T. J Appl Phys, 1996; 79: 5443
[5] Tomida T. J Mater Eng Perform, 1996; 5: 316
[6] Tomida T, Uenoya S. IEEE Trans Magn, 2001; 37: 2318
[7] Tomida T, Sano N, Ueda K, Fujiwarab K, Takahashi N. J Magn Magn Mater, 2003; 254-255: 315
[8] Tomida T. Metall Trans, 2003; 44: 1096
[9] Kovac F, Dzubinsky M, Sidor Y. J Magn Magn Mater, 2004; 269: 333
[10] He L J. Wuhan Iron Steel Corp Technol, 1981; (3): 58 (何礼君. 武钢技术, 1981; (3): 58)
[11] He L J, Pei D R. Wuhan Iron Steel Corp Technol, 1981; (4): 28 (何礼君, 裴大荣. 武钢技术, 1981; (4): 28)
[12] Xie L, Yang P, Zhang N, Mao W M. J Mater Eng Perform, http://link.springer.com/article/10.1007/s11665-014-1201-7/fulltext.html
[13] Marder A R. Metall Trans, 1986; 17A: 1227
[14] Ashbrook R W J, Marder A R. Metall Trans, 1985; 16A: 897
[15] Swisher J H. Trans TMS AIME, 1968; 242: 763
[16] Pyyry J, Kettunen E. Scand J Met, 1973; 2: 265
[17] Marder A, Perpetua S M, Kowalik J A, Stephenson E T. Metall Trans, 1985; 16A: 1160
[18] Sidor Y, Kovac F. Mater Charact, 2005; 55: 1
[19] Dzubinsky M, Sidor Y, Kovac F. Mater Sci Eng, 2004; A385: 449
[20] Sidor Y, Kovac F, Kvackaj T. Acta Mater, 2007; 55: 1711
[21] Mao W M, Zhao X B. Recrystallization and Grain Growth in Metals. Beijing: Metallurgical Industry Press, 1994: 274 (毛卫民, 赵新兵. 金属的再结晶与晶粒长大. 北京: 冶金工业出版社, 1994: 274)
[22] Carlos R O. Scr Mater, 1996; 35: 1253
[23] Takashima M, Komatsubara M, Morit N. ISIJ Int, 1997; 37: 1263
[24] Park J T, Szpunar J A. Acta Mater, 2003; 51: 3037
[25] Xie L, Yang P, Zhang N, Zong C, Xia D S, Mao W M. J Magn Magn Mater, 2014; 356: 1
[26] Sung J K, Lee D N, Wang D H. ISIJ Int, 2011; 51: 284
[27] Sung J K, Park S M, Shim B Y. Mater Sci Forum, 2012; 702-703: 730
[1] 马晋遥,王晋,赵云松,张剑,张跃飞,李吉学,张泽. 一种第二代镍基单晶高温合金1150 ℃原位拉伸断裂机制研究[J]. 金属学报, 2019, 55(8): 987-996.
[2] 邓丽萍,崔凯旋,汪炳叔,向红亮,李强. AZ31镁合金室温多道次压缩过程微观组织和织构演变的研究[J]. 金属学报, 2019, 55(8): 976-986.
[3] 李鑫,董月成,淡振华,常辉,方志刚,郭艳华. 等通道角挤压制备超细晶纯Ti的腐蚀性能研究[J]. 金属学报, 2019, 55(8): 967-975.
[4] 吴春雷,李德伟,朱晓伟,王强. 电磁旋流水口连铸技术对小方坯凝固组织形貌和宏观偏析的影响[J]. 金属学报, 2019, 55(7): 875-884.
[5] 李博,张忠铧,刘华松,罗明,兰鹏,唐海燕,张家泉. 高强耐蚀管钢点状偏析及带状缺陷的特征与演变[J]. 金属学报, 2019, 55(6): 762-772.
[6] 黄森森,马英杰,张仕林,齐敏,雷家峰,宗亚平,杨锐. α+β两相钛合金元素再分配行为及其对显微组织和力学性能的影响[J]. 金属学报, 2019, 55(6): 741-750.
[7] 刘巧沐,黄顺洲,刘芳,杨艳,南宏强,张东,孙文儒. B含量对K417G合金凝固过程中组织演变和力学性能的影响[J]. 金属学报, 2019, 55(6): 720-728.
[8] 蓝春波,梁家能,劳远侠,谭登峰,黄春艳,莫羡忠,庞锦英. 冷轧态Ti-35Nb-2Zr-0.3O合金的异常热膨胀行为[J]. 金属学报, 2019, 55(6): 701-708.
[9] 刘征,刘建荣,赵子博,王磊,王清江,杨锐. 电子束快速成形制备TC4合金的组织和拉伸性能分析[J]. 金属学报, 2019, 55(6): 692-700.
[10] 陈占兴,丁宏升,陈瑞润,郭景杰,傅恒志. 脉冲电流作用下TiAl合金凝固组织演变及形成机理[J]. 金属学报, 2019, 55(5): 611-618.
[11] 安同邦,魏金山,单际国,田志凌. 保护气成分对1000 MPa级高强熔敷金属组织特征的影响[J]. 金属学报, 2019, 55(5): 575-584.
[12] 刘后龙,马明玉,刘玲玲,魏亮亮,陈礼清. 热轧板退火工艺对19Cr2Mo1W铁素体不锈钢织构与成形性能的影响[J]. 金属学报, 2019, 55(5): 566-574.
[13] 高钰璧, 丁雨田, 陈建军, 许佳玉, 马元俊, 张东. 挤压态GH3625合金冷变形过程中的组织和织构演变[J]. 金属学报, 2019, 55(4): 547-554.
[14] 任德春, 苏虎虎, 张慧博, 王健, 金伟, 杨锐. 冷旋锻变形对TB9钛合金显微组织和拉伸性能的影响[J]. 金属学报, 2019, 55(4): 480-488.
[15] 刘耀鸿,王朝辉,刘轲,李淑波,杜文博. Er对Mg-5Zn-xEr镁合金热裂敏感性的影响[J]. 金属学报, 2019, 55(3): 389-398.