Please wait a minute...
金属学报  2014, Vol. 50 Issue (12): 1437-1445    DOI: 10.11900/0412.1961.2014.00311
  论文 本期目录 | 过刊浏览 |
升温速率对低碳无取向电工钢脱碳退火组织及织构的影响
夏冬生, 杨平, 谢利, 毛卫民
北京科技大学材料科学与工程学院, 北京 100083
INFLUENCE OF HEATING RATE ON THE DECARBU- RIZED ANNEALING MICROSTRUCTURE AND TEXTURE IN LOW-CARBON NON-ORIENTED ELECTRICAL STEEL
XIA Dongsheng, YANG Ping, XIE Li, MAO Weimin
School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083
全文: PDF(8100 KB)   HTML
摘要: 研究了不同升温速率下低碳电工钢两相区脱碳退火组织与织构的演变规律. 结果表明, 脱碳退火升温速率对最终组织和织构均有显著影响: 升温速率决定了柱状晶的“形核”位置, 慢速升温时, 柱状晶“晶核”在表层向里的一定范围内形成, 最终在样品表面附近形成小尺寸晶粒层, 而快速升温则形成完整的柱状晶组织; 慢速升温时获得强g线织构及相对较弱的a线织构, 而快速升温则使g线织构大幅度减弱, a线组分有所增强, 并产生了一定强度的{001}<120>织构. 实验结果证明, 最终的脱碳退火织构主要取决于“形核”处再结晶晶粒的织构成分.
关键词 电工钢柱状晶组织织构升温速率    
Abstract:The present work investigates the effect of heating rate on the evolution of decarburized microstructures and textures in low-carbon electrical steels within the inter-critical temperature region. The results show that heating rate has a significant effect on both the final microstructures and textures during the process of decarburization annealing. The ''nucleation'' sites of columnar grains are determined by the heating rate. Slow heating rate would have the ''nuclei'' formed within a certain range of the surface layer, and finally leading to a fine-grained layer near the sample surface. By comparison, a complete columnar microstructure is acquired under the rapid heating condition. Strong g-fiber and relatively weak a-fiber components were obtained at the slow heating rate. In contrast, g-fiber texture is greatly weakened and a-fiber component slightly strengthened under the rapid heating condition, and a relatively strong {001}<120> texture is formed at the same time. The experimental results prove that the final decarburized textures are mainly dependent upon the texture component of recrystallized grains in the ''nucleation'' sites.
Key wordselectrical steel    columnar grain    microstructure    texture    heating rate
     出版日期: 2014-12-25
基金资助:* 国家自然科学基金资助项目 51071024
Corresponding author: Correspondent: YANG Ping, professor, Tel: (010)82376968, E-mail: yangp@mater.ustb.edu.cn   
作者简介: 夏冬生, 男, 1989年生, 硕士生

引用本文:

夏冬生, 杨平, 谢利, 毛卫民. 升温速率对低碳无取向电工钢脱碳退火组织及织构的影响[J]. 金属学报, 2014, 50(12): 1437-1445.
XIA Dongsheng, YANG Ping, XIE Li, MAO Weimin. INFLUENCE OF HEATING RATE ON THE DECARBU- RIZED ANNEALING MICROSTRUCTURE AND TEXTURE IN LOW-CARBON NON-ORIENTED ELECTRICAL STEEL. Acta Metall, 2014, 50(12): 1437-1445.

链接本文:

http://www.ams.org.cn/CN/10.11900/0412.1961.2014.00311      或      http://www.ams.org.cn/CN/Y2014/V50/I12/1437

图1  实验工艺路线图
图2  低碳电工钢在不同工艺条件下的脱碳退火组织
图3  不同升温速率下脱碳退火样品的EBSD图及相应的φ2=45°截面取向分布函数(ODF)图
图4  不同升温速率下样品表层的再结晶织构统计
图5  慢速升温下的部分再结晶组织
图6  不同升温速率下样品内部的温度分布曲线示意图
图7  不同升温速率下的相关织构的统计
图8  H2DA2冷轧板部分再结晶及相应脱碳退火后的EBSD图、极图及φ2=45°截面ODF图
[1] He Z Z, Zhao Y, Luo H W. Electrical Steels. Beijing: Metallurgical Industry Press, 2012: 187 (何忠治, 赵 宇, 罗海文. 电工钢. 北京: 冶金工业出版社, 2012: 187)
[2] Park J T, Szpunar J A, Cha S Y. ISIJ Int, 2003; 43: 1611
[3] Tomida T, Tanaka T. ISIJ Int, 1995; 35: 548
[4] Tomida T. J Appl Phys, 1996; 79: 5443
[5] Tomida T. J Mater Eng Perform, 1996; 5: 316
[6] Tomida T, Uenoya S. IEEE Trans Magn, 2001; 37: 2318
[7] Tomida T, Sano N, Ueda K, Fujiwarab K, Takahashi N. J Magn Magn Mater, 2003; 254-255: 315
[8] Tomida T. Metall Trans, 2003; 44: 1096
[9] Kovac F, Dzubinsky M, Sidor Y. J Magn Magn Mater, 2004; 269: 333
[10] He L J. Wuhan Iron Steel Corp Technol, 1981; (3): 58 (何礼君. 武钢技术, 1981; (3): 58)
[11] He L J, Pei D R. Wuhan Iron Steel Corp Technol, 1981; (4): 28 (何礼君, 裴大荣. 武钢技术, 1981; (4): 28)
[12] Xie L, Yang P, Zhang N, Mao W M. J Mater Eng Perform, http://link.springer.com/article/10.1007/s11665-014-1201-7/fulltext.html
[13] Marder A R. Metall Trans, 1986; 17A: 1227
[14] Ashbrook R W J, Marder A R. Metall Trans, 1985; 16A: 897
[15] Swisher J H. Trans TMS AIME, 1968; 242: 763
[16] Pyyry J, Kettunen E. Scand J Met, 1973; 2: 265
[17] Marder A, Perpetua S M, Kowalik J A, Stephenson E T. Metall Trans, 1985; 16A: 1160
[18] Sidor Y, Kovac F. Mater Charact, 2005; 55: 1
[19] Dzubinsky M, Sidor Y, Kovac F. Mater Sci Eng, 2004; A385: 449
[20] Sidor Y, Kovac F, Kvackaj T. Acta Mater, 2007; 55: 1711
[21] Mao W M, Zhao X B. Recrystallization and Grain Growth in Metals. Beijing: Metallurgical Industry Press, 1994: 274 (毛卫民, 赵新兵. 金属的再结晶与晶粒长大. 北京: 冶金工业出版社, 1994: 274)
[22] Carlos R O. Scr Mater, 1996; 35: 1253
[23] Takashima M, Komatsubara M, Morit N. ISIJ Int, 1997; 37: 1263
[24] Park J T, Szpunar J A. Acta Mater, 2003; 51: 3037
[25] Xie L, Yang P, Zhang N, Zong C, Xia D S, Mao W M. J Magn Magn Mater, 2014; 356: 1
[26] Sung J K, Lee D N, Wang D H. ISIJ Int, 2011; 51: 284
[27] Sung J K, Park S M, Shim B Y. Mater Sci Forum, 2012; 702-703: 730
[1] 席明哲, 吕超, 吴贞号, 尚俊英, 周玮, 董荣梅, 高士友. 连续点式锻压激光快速成形TC11钛合金的组织和力学性能[J]. 金属学报, 2017, 53(9): 1065-1074.
[2] 梅益, 孙全龙, 喻丽华, 王传荣, 肖华强. 基于GA-ELM的铝合金压铸件晶粒尺寸预测[J]. 金属学报, 2017, 53(9): 1125-1132.
[3] 李天瑞, 刘国怀, 徐莽, 牛红志, 付天亮, 王昭东, 王国栋. Ti-43Al-4Nb-1.5Mo合金包套锻造与热处理过程的微观组织及高温拉伸性能[J]. 金属学报, 2017, 53(9): 1055-1064.
[4] 侯陇刚, 刘明荔, 王新东, 庄林忠, 张济山. 高强7050铝合金超低温大变形加工与组织、性能调控[J]. 金属学报, 2017, 53(9): 1075-1090.
[5] 刘国怀, 李天瑞, 徐莽, 付天亮, 李勇, 王昭东, 王国栋. 累积叠轧TC4钛合金的组织演化与力学性能[J]. 金属学报, 2017, 53(9): 1038-1046.
[6] 陈波, 郝宪朝, 马颖澈, 查向东, 刘奎. 添加N对Inconel 690合金显微组织和晶界微区成分的影响[J]. 金属学报, 2017, 53(8): 983-990.
[7] 陈懿, 郭明星, 易龙, 袁波, 李高洁, 庄林忠, 张济山. 新型Al-Mg-Si-Cu-Zn合金板材组织、织构和性能的优化调控[J]. 金属学报, 2017, 53(8): 907-917.
[8] 郭廷彪, 李琦, 王晨, 张锋, 贾智. 单晶Cu等通道转角挤压A路径形变特征及力学性能[J]. 金属学报, 2017, 53(8): 991-1000.
[9] 杨建海,张玉祥,葛利玲,程晓,陈家照,高杨. 焊前混合表面纳米化对2A14铝合金搅拌摩擦焊接头微观组织和力学性能的影响[J]. 金属学报, 2017, 53(7): 842-850.
[10] 周野,毛萍莉,王志,刘正,王峰. Mg-7Zn-xCu-0.6Zr合金热裂行为的研究[J]. 金属学报, 2017, 53(7): 851-860.
[11] 舒志强,袁鹏斌,欧阳志英,龚丹梅,白雪明. 回火温度对26CrMo钻杆钢显微组织和力学性能的影响[J]. 金属学报, 2017, 53(6): 669-676.
[12] 谷倩倩, 阮莹, 朱海哲, 闫娜. 冷却速率对急冷Fe-Al-Nb三元合金凝固组织形成的影响[J]. 金属学报, 2017, 53(6): 641-647.
[13] 牛志伟,叶政,刘凯凯,黄继华,陈树海,赵兴科. Al-Si-Ge钎料钎焊Cu/Al接头组织与性能研究[J]. 金属学报, 2017, 53(6): 719-725.
[14] 刘玉, 秦盛伟, 左训伟, 陈乃录, 戎咏华. 全淬透圆柱件淬火应力的有限元模拟及实验验证[J]. 金属学报, 2017, 53(6): 733-742.
[15] 王大伟,修世超. 焊接温度对碳钢/奥氏体不锈钢扩散焊接头界面组织及性能的影响[J]. 金属学报, 2017, 53(5): 567-574.