Please wait a minute...
金属学报  2015, Vol. 51 Issue (4): 425-439    DOI: 10.11900/0412.1961.2014.00299
  本期目录 | 过刊浏览 |
三代核电接管安全端异种金属焊接接头的显微表征
丁杰1,2(), 张志明1,2, 王俭秋1,2, 韩恩厚1,2, 唐伟宝3,4, 张茂龙3,4, 孙志远3,4
1 中国科学院金属研究所核用材料与安全评价重点实验室, 沈阳 110016
2 中国科学院金属研究所辽宁省核电材料安全与评价技术重点实验室, 沈阳 110016
3 上海电气核电设备有限公司, 上海 201306
4 上海核电装备焊接及检测工程技术研究中心, 上海 201306
MICRO-CHARACTERIZATION OF DISSIMILAR METAL WELD JOINT FOR CONNECTING PIPE- NOZZLE TO SAFE-END IN GENERATION III NUCLEAR POWER PLANT
DING Jie1,2(), ZHANG Zhiming1,2, WANG Jianqiu1,2, HAN En-Hou1,2, TANG Weibao3,4, ZHANG Maolong3,4, SUN Zhiyuan3,4
1 Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
2 Liaoning Key Laboratory for Safety and Assessment Technique of Nuclear Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
3 Shanghai Electric Nuclear Power Equipment Co. Ltd., Shanghai 201306
4 Shanghai Research Center for Weld and Detection Engineering Technique of Nuclear Equipment, Shanghai 201306
引用本文:

丁杰, 张志明, 王俭秋, 韩恩厚, 唐伟宝, 张茂龙, 孙志远. 三代核电接管安全端异种金属焊接接头的显微表征[J]. 金属学报, 2015, 51(4): 425-439.
Jie DING, Zhiming ZHANG, Jianqiu WANG, En-Hou HAN, Weibao TANG, Maolong ZHANG, Zhiyuan SUN. MICRO-CHARACTERIZATION OF DISSIMILAR METAL WELD JOINT FOR CONNECTING PIPE- NOZZLE TO SAFE-END IN GENERATION III NUCLEAR POWER PLANT[J]. Acta Metall Sin, 2015, 51(4): 425-439.

全文: PDF(20355 KB)   HTML
摘要: 

利用OM, TEM, SEM, 显微硬度仪, AFM, 磁力显微镜(MFM)和扫描Kelvin探针(SKPFM)等微观分析手段, 分析了先进压水堆核电站反应堆压力容器安全端异种金属焊接接头低合金钢A508/镍基焊料52M/奥氏体不锈钢316L的金相组织、显微硬度、主要合金元素、晶界类型以及残余应变的分布, 并对比了整个焊接接头不同厚度上的组织和性能. 结果表明, 焊缝厚度方向上组织和硬度没有显著差别, 底焊位置出现一层未熔焊料形成的细小等轴晶, 在316L母材热影响区(HAZ)内残余应变较焊接件其它位置高, 熔合线附近具有复杂的微观结构、显微硬度、晶界类型、元素成分和残余应变分布. TEM和MFM分析表明, 母材316L基体内有富Cr, Mo元素的颗粒状析出相, SKPFM的结果显示该析出相Volta电势较基体更负, 因而更不耐腐蚀.

关键词 异种金属焊接显微结构显微硬度成分分布晶界类型残余应变    
Abstract

The dissimilar metal weld joint (DMWJ) in primary water system of pressurized water reactors (PWRs) has been proven to be a vulnerable component owing to its proneness to different type of flaws. Thus, maintaining integrity of such joint in case of defect presence is of great importance to the design and safe management of nuclear power plants (NPPs). For a reliable integrity analysis of DMWJ, it is essential to understand the microscopic characteristics in all regions of the joint. In this work, OM, TEM, SEM, durometer, AFM, MFM and SKPFM were utilized to investigate the microstructure, micro-hardness and the distribution of main elements, grain boundary characteristic and residual strain in the A508/52M/316L DMWJ that used for connecting the pipe safe-end and the nozzle of reactor pressure vessel in PWRs, and a comparative analysis about the microstructure and property along the radical direction of the DMWJ was obtained. The results showed that there was no region that differed from the other part of the weldment in terms of the microstructure and micro-hardness dramatically. A layer of fine grain resulting from unmelted filler metal was found in the backing weld part of the joint. The residual strain in the heat affected zone (HAZ) of 316L was higher than that in other regions. Meanwhile, drastic variations in the microstructure, chemical composition distribution and grain boundary character distribution (GBCD) in both the 316L/52Mw and the 52Mb/A508 interface regions were observed. The analyses using TEM and MFM test showed that a large number of chromium and molybdenum-rich precipitates particles distributed both along the grain boundaries and inside grains in the 316L base metal, which were identified to be precipitates with complex elementary composition rather than the normal string delta ferrite in 316L austenitic stainless steel. The SKPFM test result indicated that these precipitates were more prone to be corroded than the base metal. Therefore, further investigation about the cause of deformation and the impacts to the corrosion resistance, particularly the stress corrosion cracking (SCC) sensitivity of the precipitates needs to be carried out.

Key wordsdissimilar metal welding    microstructure    micro-hardness    chemical composition distribution    grain boundary character    residual strain
    
ZTFLH:  TG113  
基金资助:* 国家重点基础研究发展计划项目G2011CB610502和国家科技重大项目2011ZX06004-009资助
作者简介: null

丁 杰, 男, 1990年生, 硕士生

Material Cr Ni Mo Mn Si Cu Ti Nb C Fe
316L 17.60 12.42 2.69 1.62 0.65 0.080 - <0.04 0.028 Bal.
A508 0.14 0.88 0.52 1.39 0.25 0.030 - - 0.220 Bal.
52Mw 29.52 59.19 0.03 0.78 0.11 0.024 0.20 0.86 0.008 9.03
52Mb 29.70 59.25 0.01 0.82 0.12 0.025 0.22 0.81 0.008 8.88
表1  异种金属焊接件各部分材料的主要合金元素含量
图1  异种金属焊接件宏观形貌图及取样方案
图2  对接焊缝52Mw与堆焊隔离层52Mb的组织形貌
图3  位置4样品焊缝宏观组织与位置3样品对接焊缝底焊位置细小等轴晶的OM像
图4  A508内壁镍基合金包覆层的OM像
图5  母材316L的组织形貌及析出相形态的OM像
图6  母材316L中大颗粒析出相的SEM像及MFM, SKPFM分析结果
图7  母材316L中小颗粒析出相的SEM像、TEM像和EDS分析
图8  316LSS热影响区组织形貌
图9  母材A508基体组织形貌
图10  A508热影响区组织形貌
图11  A508与内壁包覆层接触部分热影响区的组织形貌
图12  316L/52Mw熔合线界面组织形貌
图13  52Mb/A508熔合线界面组织形貌
图14  异种金属焊接接头不同壁厚处的显微硬度分布
图15  316L/52Mw熔合线界面主要合金元素分布
图16  52Mb/A508熔合线界面主要合金元素分布
图17  316L/52Mw熔合线界面附近晶界类型分布的EBSD像
图18  316L/52Mw熔合线界面附近晶界特征分布
图19  外壁52Mb/A508 熔合线界面晶界类型分布图
图20  52Mb/A508 熔合线界面附近晶界特征分布
图21  内壁熔合线界面附近核心平均取向差(KAM)分布图的EBSD像
图22  熔合线界面附近核心平均取向差(KAM)分布
[1] Han E H, Wang J Q, Wu X Q, Ke W. Acta Metall Sin, 2010; 46: 1379
[1] (韩恩厚, 王俭秋, 吴欣强, 柯 伟. 金属学报, 2010; 46: 1379)
[2] Joseph A,Rai S K,Jayakumar T,Murugan N. Int J Pressure Vessels Piping, 2006; 82: 700
[3] Seifert H P, Ritter S, Shoji T. J Nucl Mater, 2008; 378: 197
[4] Wang H T, Wang G Z, Xuan F Z, Tu S T. Eng Failure Analysis, 2013; 28: 134
[5] Peng Q J, Xue H, Hou J, Sakaguchi K, Takeda Y, Kuniya J, Shoji T. Corros Sci, 2011; 53: 4309
[6] Hou J, Peng Q J, Kuniya J, Shoji T, Wang J Q, Han E H, Ke W. J Mater Sci, 2010; 397: 109
[7] Li G F, Congleton J. Corros Sci, 2000; 42: 1005
[8] Meng F J, Wang J Q, Han E H, Shoji T, Ke W. Acta Metall Sin, 2011; 47: 839
[8] (孟凡江, 王俭秋, 韩恩厚, 庄子哲雄, 柯 伟. 金属学报, 2011; 47: 839)
[9] Bowerman B S, Czajkowski C J, Roberts T C, Neal C. Mater Charact, 1999; 43: 347
[10] Li G F, Li G J, Fang K W, Peng J, Yang W. Acta Metall Sin, 2011; 47: 797
[10] (李光福, 李冠军, 方可伟, 彭 君, 杨 武. 金属学报, 2011; 47: 797)
[11] Wang H T, Wang G Z, Xuan F Z, Liu F Z, Tu S T. Mater Sci Eng, 2013; A568: 108
[12] Choi K J, Kim J J, Lee B H, Bahn C B, Kim J H. J Nucl Mater, 2013; 441: 493
[13] Hou J, Peng Q J, Lu Z P, Shoji T, Wang J Q, Han E H, Ke W. Corros Sci, 2010; 52: 3949
[14] Hanninen H, Brederholm A, Toivonen A. 15th Int Conf on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors, Colorado Springs: TMS, 2011: 197
[15] Sathirathinda N, Gubner R, Pan J, Kivisakk U. Electrochem Solid-State Lett, 2008; 11: C41
[16] Kasper J S. Acta Metall, 1954; 2: 456
[17] Michalska J, Sozanska M. Mater Charact, 2006; 56: 355
[18] Popov A A, Bannikova A S, Belikov S V. Phys Met Metall, 2009; 108: 586
[19] Chun E J, Baba H, Nishimoto K, Saida K. Mater Charact, 2013; 86: 152
[20] Escriba D M, Materna-Morris E, Plaut R L, Padilha A F. Mater Charact, 2009; 60: 1214
[21] Martin D S,Rivera Diaz del Castillo P E J, Peekstok E van del Zwaag S. Mater Charact, 2007; 58: 455
[22] Lai J K L, Meshukat M. Met Sci, 1978; 9: 416
[23] Falata L, Svoboda M, Výrostkova A, Petryshynets I, Sopko M. Mater Charact, 2012; 72: 15
[24] Naffakh H, Shamanian M, Ashrafizadeh F. J Mater Process Technol, 2009; 209: 3628
[25] Nelson T W, Lippold J C, Mills M J. Sci Technol Weld Joining, 1998; 77: 249
[26] Rowe M D, Nelson T W, Lippold J C. Sci Technol Weld Joining, 1999; 78: 31
[27] Srinivasan P B, Muthupandi V, Dietzel W, Sivan V. Mater Des, 2006; 27: 182
[28] Hou J, Peng Q J, Shoji T, Wang J Q, Ke W, Han E H. Acta Metall Sin, 2010; 46: 1258
[28] (侯 娟, 彭群家, 庄子哲雄, 王俭秋, 柯 伟, 韩恩厚. 金属学报, 2010; 46: 1258)
[29] Asami K, Sakai T. Trans Iron Steel Inst Jpn, 1981; 21: B269
[30] Nelson T W, Lippold J C, Mills M J. Sci Technol Weld Joining, 1999; 78: 329
[31] Nelson T W, Lippold J C, Mills M J. Sci Technol Weld Joining, 2000; 79: 267
[32] Hou J, Peng Q J, Takeda Y, Kuniya J, Shoji T, Wang J Q, Han E H, Ke W. J Mater Sci, 2010; 45: 5332
[33] Wang H T. PhD Dissertation, East China University of Science and Technology, Shanghai, 2013
[33] (王海涛. 华东理工大学博士学位论文, 上海, 2013)
[34] Naffakh H, Shamanian M, Ashrafizadeh F. J Mater Process Technol, 2009; 209: 3628
[35] Gertsman V Y, Tangri K, Valiev R Z. Acta Metall Mater, 1994; 42: 1785
[36] Gertsman V Y, Bruemmer S M. Acta Mater, 2001; 49: 1589
[37] Lehockey E M, Brennenstuhl A M, Thompson I. Corros Sci, 2004; 46: 2383
[38] Pan Y, Adams B L, Olson T, Panayotou N. Acta Mater, 1996; 44: 4685
[39] Lee H T, Wu J L. Corros Sci, 2009; 51: 733
[40] Qiao D, Zhang W, Pan T Y, Crooker P, David S, Feng Z. Sci Technol Weld Joining, 2013; 92: 624
[1] 梁琛, 王小娟, 王海鹏. 快速凝固Ti-Al-Nb合金B2相形成机制与显微力学性能[J]. 金属学报, 2022, 58(9): 1169-1178.
[2] 吴进, 杨杰, 陈浩峰. 纳入残余应力时不同拘束下DMWJ的断裂行为[J]. 金属学报, 2022, 58(7): 956-964.
[3] 杨勇, 赫全锋. 高熵合金中的晶格畸变[J]. 金属学报, 2021, 57(4): 385-392.
[4] 杨锐, 马英杰, 雷家峰, 胡青苗, 黄森森. 高强韧钛合金组成相成分和形态的精细调控[J]. 金属学报, 2021, 57(11): 1455-1470.
[5] 黄远, 杜金龙, 王祖敏. 二元互不固溶金属合金化的研究进展[J]. 金属学报, 2020, 56(6): 801-820.
[6] 杨杰, 王雷. 核电站DMWJ中材料拘束的影响与优化[J]. 金属学报, 2020, 56(6): 840-848.
[7] 邓聪坤,江鸿翔,赵九洲,何杰,赵雷. Ag-Ni偏晶合金凝固过程研究[J]. 金属学报, 2020, 56(2): 212-220.
[8] 张煜, 娄丽艳, 徐庆龙, 李岩, 李长久, 李成新. 超高速激光熔覆镍基WC涂层的显微结构与耐磨性能[J]. 金属学报, 2020, 56(11): 1530-1540.
[9] 李克俭, 张宇, 蔡志鹏. 异种金属焊接接头在热-力耦合作用下的断裂位置转移机理[J]. 金属学报, 2020, 56(11): 1463-1473.
[10] 刘海霞, 陈金豪, 陈杰, 刘光磊. NaCl溶液腐蚀后304不锈钢的射流空蚀特征[J]. 金属学报, 2020, 56(10): 1377-1385.
[11] 翟斌, 周凯, 吕鹏, 王海鹏. 自由落体条件下Ti-6Al-4V合金微液滴的快速凝固研究[J]. 金属学报, 2018, 54(5): 824-830.
[12] 刘锡荣, 张凯, 夏爽, 刘文庆, 李慧. 690合金中三晶交界及晶界类型对碳化物析出形貌的影响[J]. 金属学报, 2018, 54(3): 404-410.
[13] 陈占兴,丁宏升,刘石球,陈瑞润,郭景杰,傅恒志. 直流电流对Ti-48Al-2Cr-2Nb合金组织和性能的影响[J]. 金属学报, 2017, 53(5): 583-591.
[14] 明洪亮,张志明,王俭秋,韩恩厚,苏明星. 国产核电安全端异种金属焊接件的微观结构及局部性能研究[J]. 金属学报, 2017, 53(1): 57-69.
[15] 赵时璐,张震,张钧,王建明,张正贵. 多弧离子镀TiAlZrCr/(Ti, Al, Zr, Cr)N梯度膜的微观结构与耐磨损性能*[J]. 金属学报, 2016, 52(6): 747-754.