Please wait a minute...
金属学报  2015, Vol. 51 Issue (2): 239-248    DOI: 10.11900/0412.1961.2014.00292
  论文 本期目录 | 过刊浏览 |
W和Re对固溶态镍基单晶高温合金变形和再结晶的影响*
濮晟1, 2, 谢光2, 3, 郑伟2, 王栋2, 3, 卢玉章2, 楼琅洪2, 冯强1
1 北京科技大学新金属材料国家重点实验室, 北京 100083; 2 中国科学院金属研究所, 沈阳 110016; 3 中国科学院金属研究所沈阳材料科学国家(联合)实验室, 沈阳 110016
EFFECT OF W AND Re ON DEFORMATION AND RECRYSTALLIZATION OF SOLUTION HEAT TREATED Ni-BASED SINGLE CRYSTAL SUPERALLOYS
PU Sheng1, 2, XIE Guang2, 3, ZHENG Wei2, WANG Dong2, 3, LU Yuzhang2, LOU Langhong2, FENG Qiang1
1 State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083; 2 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016; 3 Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
全文: PDF(7711 KB)   HTML  
摘要: 镍基单晶高温合金固溶处理后, 分别经过Brinell硬度计压痕和吹砂引入变形, 热处理后观察再结晶, 研究了W和Re元素对固溶态镍基单晶高温合金变形和再结晶的影响. 结果表明, 加入W和Re后, 单晶高温合金变形后位错密度增大, 位错缠结增多, 再结晶形核时间滞后, 即再结晶孕育期延长, 再结晶深度明显减小. 单晶高温合金经吹砂后, 表面显微硬度明显增加, 加入W和Re后, 变形深度减小, 再结晶晶界迁移速率最大值降低, 且沿着再结晶深度方向, 晶界平均迁移速率的变化与显微硬度变化趋势一致。
关键词 镍基单晶高温合金再结晶位错显微硬度WRe    
Abstract:Ni-based single crystal superalloys have been widely used for blades and vanes in gas turbine. However, recrystallization (RX) induced by residual strain has been a serious problem for the application of single crystal superalloys. In previous work, effect of microstructure, such as ϒ', g/g' eutectics and carbides, as well as heat treatment parameters, on the RX behavior have been studied. However, the effect of alloy elements on the RX behavior has rarely been reported. Therefore, in this work, the effect of the important solution strengthening elements, W and Re, on the deformation and RX of solution heat treated Ni-based single crystal superalloys was investigated. At first, two single crystal superalloys were prepared, and W and Re were added into one alloy among them. After solution heat treatment, these two single crystal superalloys were deformed by shot-peening or Brinell indentation. Then these deformed samples were heat treated to observe the microstructure of RX. It indicated that RX depth decreased with the addition of W and Re irrespective of deformation mode and heat treatment temperature. Short time heat treatment experiment of indented and shot-peened samples both indicated that incubation period of RX was prolonged and nucleation of RX was slowed with the addition of W and Re, which verified that RX was suppressed by W and Re. After shot-peening, micro-hardness of the alloy with W and Re increased, but the depth of deformation zone was obviously reduced. Higher density of dislocation was found in the single crystal superalloy with W and Re, and also lots of dislocation tangles were observed. So, in this alloy, dislocation annihilated slowly, that is, recovery was slowed down, which prolonged the incubation period of RX. During the process of RX grain growth, the maximum RX grain boundary migration velocity was reduced with the addition of W and Re. Moreover, the change of mean RX grain boundary migration velocity showed the same trend with the micro-hardness along the direction of RX depth。
Key wordsNi-based single crystal superalloy    recrystallization    dislocation    micro-hardness    W    Re
收稿日期: 2014-05-30      出版日期: 2015-07-23
ZTFLH:  TG132.3  
基金资助:*国家自然科学基金项目50901079, 国家重点基础研究发展计划项目2010CB631201和国家高技术研究发展计划项目2012AA03A513资助
Corresponding author: Correspondent: XIE Guang, associate professor, Tel: (024)23971712, E-mail: gxie@imr.ac.cn     E-mail: gxie@imr.ac.cn
作者简介: 濮 晟, 男, 1981年生, 工程师

引用本文:

濮晟, 谢光, 郑伟, 王栋, 卢玉章, 楼琅洪, 冯强. W和Re对固溶态镍基单晶高温合金变形和再结晶的影响*[J]. 金属学报, 2015, 51(2): 239-248.
PU Sheng, XIE Guang, ZHENG Wei, WANG Dong, LU Yuzhang, LOU Langhong, FENG Qiang. EFFECT OF W AND Re ON DEFORMATION AND RECRYSTALLIZATION OF SOLUTION HEAT TREATED Ni-BASED SINGLE CRYSTAL SUPERALLOYS. Acta Metall, 2015, 51(2): 239-248.

链接本文:

http://www.ams.org.cn/CN/10.11900/0412.1961.2014.00292      或      http://www.ams.org.cn/CN/Y2015/V51/I2/239

图1  2种镍基单晶高温合金固溶处理淬火后ϒ'相的SEM像
图2  2种镍基单晶高温合金压痕后经 1310 ℃, 4 h处理的再结晶组织的OM像
图3  2 种镍基单晶高温合金吹砂后经1310 ℃, 4 h 处理的再结晶组织的OM像
图4  2种镍基单晶高温合金吹砂变形后再经不同温度热处理后的再结晶深度
图5  2 种镍基单晶高温合金压痕再经1310 ℃短时间热处理后的OM像
图6  2种镍基单晶高温合金压痕再经1310 ℃热处理后的再结晶数据分析
图7  2种镍基单晶高温合金吹砂后经1310 ℃短时间热处理后的OM像
图8  2种镍基单晶高温合金吹砂后经1310 ℃短时间热处理后的平均再结晶深度随时间的变化
图9  2种镍基单晶高温合金吹砂后经1310 ℃短时间热处理后的平均再结晶晶界迁移速率随时间的变化
图10  2种镍基单晶高温合金吹砂后经1310 ℃短时间热处理的平均再结晶晶界迁移速率与平均再结晶深度的关系
图11  2种镍基单晶高温合金吹砂变形后的显微硬度
图12  2种镍基单晶合金经过压痕变形后的TEM像
图13  2种镍基单晶高温合金压痕变形后经过1310 ℃, 60 s处理后的TEM像
表1  镍基单晶高温合金的名义化学成分
[1] Huang Q Y, Li H K. Superalloy. Beijing: Metallurgy Industry Press, 2000: 4 (黄乾尧, 李汉康. 高温合金. 北京:冶金工业出版社, 2000: 4)
[2] Sims C T. Superalloy II. New York: John Wiley & Sons, 1987: 1
[3] Reed R C. The Superalloys: Fundamentals and Applications. Cambridge: Cambridge University Press, 2006: 121
[4] Bürgel R, Portella P D, Preuhs J. In: Pollock T M, Kissinger R D, Bowman R R, Green K A, McLean M, Olson S, Schirra J J eds., Superalloys 2000, Warrendale: TMS, 2000: 229
[5] Xie G, Wang L, Zhang J, Lou L H. Metall Mater Trans, 2008; 39A: 206
[6] Wang D L, Jin T, Yang S Q. Mater Sci Forum, 2007; 546: 1229
[7] Jo C Y, Cho H Y, Kim H M. Mater Sci Technol, 2003; 19: 1665
[8] Khan T, Caron P, Nakagawa Y G. J Met, 1986; 38(7): 16
[9] Xie G, Zhang J, Lou L H. Scr Mater, 2008; 59: 858
[10] Okazaki M, Hiura T, Suzuki T. In: Pollock T M, Kissinger R D, Bowman R R, Green K A, McLean M, Olson S, Schirra J J eds., Superalloys 2000, Warrendale: TMS, 2000: 505
[11] Zambaldi C, Roters F, Raabe D, Glatzel U. Mater Sci Eng, 2007; A454-455: 433
[12] Bond S D, Martin J W. J Mater Sci, 1984; 19: 3867
[13] Xie G, Wang L, Zhang J, Lou L H. Scr Mater, 2012; 66: 378
[14] Paul U, Sahm P R, Goldschmidt D. Mater Sci Eng, 1993; A173: 49
[15] Wang L, Xie G, Zhang J, Lou L H. Scr Mater, 2006; 55: 457
[16] Wang L, Pyczak F, Zhang J, Singer R F. Int J Mater Res, 2009; 100: 1046
[17] Liu L R, Sun X T, Jin T. Mech Eng Mater, 2007; 31(5): 9 (刘丽荣, 孙新涛, 金 涛.机械工程材料, 2007; 31(5): 9)
[18] Wang L, Xie G, Lou L H. Mater Lett, 2013; 109: 154
[19] Yoda R, Wantanabe T, Sato Y. Jpn Inst Met, 1969; 33: 862
[20] Xie G. PhD Dissertation. Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 2008 (谢 光. 中国科学院金属研究所博士学位论文, 沈阳, 2008)
[21] Shi Q Y, Li X H, Zheng Y R, Xie G, Zhang J, Feng Q. Acta Metall Sin, 2012; 48: 1237 (石倩颖, 李相辉, 郑运荣, 谢 光, 张 健, 冯 强. 金属学报, 2012; 48: 1237)
[22] Nathal M V. Metall Trans, 1987; 18A: 1961
[23] Hong H U, Yoon J G, Choi B G, Kim I S, Jo C Y. Scr Mater, 2013; 69: 33
[24] Ge B H, Luo Y S, Li J R, Zhu J. Scr Mater, 2010; 63: 969
[25] Humphreys F J, Hatherly M. Recrystallization and Related Annealing Phenomena. 2nd Ed., London: Elsevier, 2004: 123
[26] Janotti A, Krcmar M, Fu C L, Reed R C. Phys Rev Lett, 2004; 92: 085901
[27] Ge B H, Luo Y S, Li J R, Zhu J. Metall Mater Trans, 2011; 42A: 548
[28] Huang M, Cheng Z Y, Xiong J C, Li J R, Hu J Q, Liu Z L, Zhu J. Acta Mater, 2014; 76: 294
[1] 陶辉锦,周珊,刘宇,尹健,许昊. D019-Ti3Al中点缺陷浓度与相互作用的第一性原理研究[J]. 金属学报, 2017, 53(6): 751-759.
[2] 陈占兴,丁宏升,刘石球,陈瑞润,郭景杰,傅恒志. 直流电流对Ti-48Al-2Cr-2Nb合金组织和性能的影响[J]. 金属学报, 2017, 53(5): 583-591.
[3] 徐洋,鲍思前,赵刚,黄祥斌,黄儒胜,刘兵兵,宋娜娜. Hi-B钢二次再结晶退火初期不同取向晶粒的三维形貌表征[J]. 金属学报, 2017, 53(5): 539-548.
[4] 王博,张军,潘雪娇,黄太文,刘林,傅恒志. W对第三代镍基单晶高温合金组织稳定性的影响[J]. 金属学报, 2017, 53(3): 298-306.
[5] 付全,沙玉辉,和正华,雷蕃,张芳,左良. Fe81Ga19二元合金薄板的再结晶织构与磁致伸缩性能[J]. 金属学报, 2017, 53(1): 90-96.
[6] 王康,邓爱红,龚敏,卢晓波,张元元,刘翔. 多能氦离子注入对W金属微结构的影响[J]. 金属学报, 2017, 53(1): 70-76.
[7] 蔡贇,孙朝阳,万李,阳代军,周庆军,苏泽兴. AZ80镁合金动态再结晶软化行为研究*[J]. 金属学报, 2016, 52(9): 1123-1132.
[8] 何承绪,杨富尧,严国春,孟利,马光,陈新,毛卫民. 常化处理对薄规格取向硅钢织构的影响*[J]. 金属学报, 2016, 52(9): 1063-1069.
[9] 张金虎,徐东生,王云志,杨锐. 位错对Ti-6Al-4V合金α相形核及微织构形成的影响*[J]. 金属学报, 2016, 52(8): 905-915.
[10] 徐斌,胡庆贤,陈树君,蒋凡,王晓丽. K-PAW准稳态过程小孔与熔池动态行为的数值模拟*[J]. 金属学报, 2016, 52(7): 804-810.
[11] 张思倩,王栋,王迪,彭建强. Re对一种定向凝固镍基高温合金微观组织的影响*[J]. 金属学报, 2016, 52(7): 851-858.
[12] 张京,郑运荣,冯强. 基于蠕变损伤的定向凝固DZ125合金恢复热处理研究*[J]. 金属学报, 2016, 52(6): 717-726.
[13] 郭巍巍,齐成军,李小武. 共轭和临界双滑移取向Cu单晶体疲劳位错结构的热稳定性研究*[J]. 金属学报, 2016, 52(6): 761-768.
[14] 郁峥嵘,丁贤飞,曹腊梅,郑运荣,冯强. 第二、三代镍基单晶高温合金含Hf过渡液相连接*[J]. 金属学报, 2016, 52(5): 549-560.
[15] 濮晟,谢光,王莉,潘智毅,楼琅洪. Re和W对铸态镍基单晶高温合金再结晶的影响*[J]. 金属学报, 2016, 52(5): 538-548.