Please wait a minute...
金属学报  2015, Vol. 51 Issue (2): 169-177    DOI: 10.11900/0412.1961.2014.00276
  本期目录 | 过刊浏览 |
不同尺寸粒子对Al-Mg-Si-Cu系合金组织、织构和力学性能的影响*
彭祥阳(), 郭明星, 汪小锋, 崔莉, 张济山, 庄林忠
北京科技大学新金属材料国家重点实验室, 北京100083
INFLUENCE OF PARTICLES WITH DIFFERENT SIZES ON MICROSTRUCTURE, TEXTURE AND MECHAN-ICAL PROPERTIES OF Al-Mg-Si-Cu SERIES ALLOYS
PENG Xiangyang(), GUO Mingxing, WANG Xiaofeng, CUI Li, ZHANG Jishan, ZHUANG Linzhong
State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083
引用本文:

彭祥阳, 郭明星, 汪小锋, 崔莉, 张济山, 庄林忠. 不同尺寸粒子对Al-Mg-Si-Cu系合金组织、织构和力学性能的影响*[J]. 金属学报, 2015, 51(2): 169-177.
Xiangyang PENG, Mingxing GUO, Xiaofeng WANG, Li CUI, Jishan ZHANG, Linzhong ZHUANG. INFLUENCE OF PARTICLES WITH DIFFERENT SIZES ON MICROSTRUCTURE, TEXTURE AND MECHAN-ICAL PROPERTIES OF Al-Mg-Si-Cu SERIES ALLOYS[J]. Acta Metall Sin, 2015, 51(2): 169-177.

全文: PDF(11081 KB)   HTML
摘要: 

通过拉伸实验, OM, SEM, TEM观察以及EBSD测试等手段研究了不同尺寸粒子对Al-Mg-Si-Cu系合金板材力学性能、组织和织构的影响规律. 结果表明, 随着溶质元素浓度的增加, 合金屈服强度和抗拉强度均不断增加, 但是延伸率却略有降低, 且3个方向存在一定差异. 此外, 合金的平均塑性应变比 r - 也随溶质元素浓度增加而增加. 3种合金基体内的不同尺寸粒子主要为Mg2Si, Al15Mn3Si2α-Al(Fe, Mn)Si富铁相, 这些粒子尺寸和浓度搭配合理不仅可以诱发粒子刺激形核效应(particle stimulated nucleation, 简称PSN), 而且可有效抑制晶粒长大, 最终使得合金固溶时形成大量细小再结晶晶粒, 而织构组分以旋转立方织构CubeND18, Goss织构{011}<100>, P{011}<122>和Cu{112}<111>为主. 此外, 根据合金成分、热加工工艺以及显微组织间的定量关系提出了不同尺寸粒子影响再结晶形核和长大过程的模型示意图。

关键词 Al-Mg-Si-Cu合金粒子再结晶织构PSN效应    
Abstract

To reduce the weight of car body, Al-Mg-Si-Cu alloys have been used to produce outer body panels of automobiles due to their relatively good formability in the solution treated condition and high strength in the age hardened condition. However, their formability is significantly poor compared to that of steels, which are the major drawbacks to wide-scale application of aluminum in the automotive industry. The microstructural characteristics developed during recrystallization, most notably grain size and crystallographic texture, play a dominant role in controlling the mechanical properties and formability of sheet in the T4 condition. In this work, the effect of particles with different sizes on the mechanical properties, microstructure and texture of Al-Mg-Si-Cu alloys was studied through tensile test, OM, SEM, TEM and EBSD measurement. The results reveal that with increase of solute concentration, the average plastic strain ratio, yield strength and ultimate tensile strength increase, but the elongation decreases and with different extents in the three directions. In addition, the number of observed particles with different sizes in the alloy matrix such as Mg2Si, Al15Mn3Si2 and α-Al(Fe, Mn)Si phases also increases. When the size and concentration of these particles are controlled appropriately, lots of finer recrystallized grains can form during solution treatment due to the particle stimulated nucleation (PSN) effect of coarse particles and pinning effect of finer particles. The main texture components include CubeND18, Goss{011}<100>, P{011}<122> and Cu{112}<111> for the alloy with fine-grained structure. At last, according to the relationship among alloy composition, thermomechanical processing and microstructure, the model of nucleation and growth of recrystallized grains affected by the particles with different sizes was also proposed。

Key wordsAl-Mg-Si-Cu alloy    particle    recrystallization    texture    PSN effect
收稿日期: 2014-05-23     
ZTFLH:  TG166  
基金资助:*国家高技术研究发展计划项目2013AA032403, 国家自然科学基金项目51301016和北京市青年“英才”计划项目YETP0409资助
作者简介: null

彭祥阳, 男, 1989年生, 硕士生

Alloy Mg Si Cu Mn Fe Al
1 0.90 0.50 0.20 0.10 0 Bal.
2 0.90 0.60 0.20 0.15 0.20 Bal.
3 0.90 0.80 0.20 0.30 0.50 Bal.
表1  实验Al-Mg-Si-Cu合金的化学成分
图1  合金板材拉伸试样示意图
图2  3种合金沿不同方向的工程应力-应变曲线
图3  3种合金沿3个方向的力学性能
图4  3种合金经加工热处理后的显微组织
图5  1号和3号合金均匀化后基体内析出相的形貌和EDS分析
图6  3号合金由4 mm冷轧至1 mm的TEM像
图7  3种合金固溶淬火态晶粒取向的EBSD分析及尺寸分布
图8  3种合金固溶处理后的取向分布函数(ODF)图
Alloy CubeND Goss Brass P Cu
1 9.00 3.90 2.78 - -
2 13.20 2.96 2.84 - -
3 9.95 4.20 - 6.36 4.54
表2  3种固溶态合金所含再结晶织构及其体积分数
图9  不同尺寸粒子影响再结晶形核和长大过程模型图
[1] Miller W S, Zhuang L, Bottema J, Wettebrood A J, De S P, Haszler A, Vieregge A. Mater Sci Eng, 2000; A280: 37
[2] Burger G B, Gupta A K, Jeffrey P W, Lloyd D J. Mater Charact, 1995; 35(1): 23
[3] Engler O, Hirsch J. Mater Sci Forum, 1996; 217: 479
[4] Hirsch J, Al-Samman T. Acta Mater, 2013; 61: 818
[5] Ma M T. Iron Steel, 2001; 36(8): 64
[5] (马鸣图. 钢铁, 2001; 36(8): 64)
[6] Esmaeili S, Lloyd D J. Acta Mater, 2005; 53: 5257
[7] Miki Y, Koyama K, Noguchi O, Ueno Y, Komatsubara T. Mater Sci Forum, 2007; 539: 333
[8] Engler O, Hirsch J. Mater Sci Eng, 2002; A336: 249
[9] Singh R K, Singh A K. Scr Mater, 1998; 38: 1299
[10] Engler O, Kong X W, Yang P. Scr Mater, 1997; 37: 1665
[11] Bennett T A, Petrov R H, Kestens L A I, Zhuang L, De S P. Scr Mater, 2010; 63: 461
[12] Liu Q, Yao Z Y, Godfrey A, Liu W. J Alloys Compd, 2009; 482: 264
[13] Vatne H E, Engler O, Nes E. Mater Sci Technol, 1997; 13: 93
[14] Engler O. Mater Sci Technol, 1996; 12: 859
[15] Engler O, Hirsch J, Lücke K. Acta Mater, 1995; 43: 121
[16] Higginson R L, Aindow M, Bate P S. Mater Sci Eng, 1997; A225: 9
[17] Zhuang L, Bottema J, Kaasenbrood P, Miller W S, De S P. Mater Sci Forum, 1996; 217: 487
[18] Jeniski R A, Thanaboonsombut B, Sanders T H. Metall Mater Trans, 1996; 27A: 19
[19] Cao L Y, Guo M X, Cui H, Cai Y H, Zhang Q X, Hu X Q, Zhang J S. Acta Metall Sin, 2013; 49: 428
[19] (曹零勇, 郭明星, 崔 华, 蔡元华, 张巧霞, 胡晓倩, 张济山. 金属学报, 2013; 49: 428)
[20] Sidor J, Petrov R H, Kestens L A I. Mater Sci Eng, 2010; A528: 413
[21] Inoue H, Takasugi T. Mater Trans, 2007; 48: 2014
[22] Hirsch J, Lücke K. Acta Metall, 1988; 36: 2863
[23] Rollett A, Humphreys F J, Rohrer G S, Hatherly M. Recrystallization and Related Annealing Phenomena. 2nd Ed., Amsterdam: Elsevier Ltd, 2004: 408
[24] Bennett T A, Petrov R H, Kestens L A I. Scr Mater, 2010; 62: 78
[25] Benum S, Nes E. Acta Mater, 1997; 45: 4593
[1] 赵鹏, 谢光, 段慧超, 张健, 杜奎. 两种高代次镍基单晶高温合金热机械疲劳中的再结晶行为[J]. 金属学报, 2023, 59(9): 1221-1229.
[2] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[3] 常松涛, 张芳, 沙玉辉, 左良. 偏析干预下体心立方金属再结晶织构竞争[J]. 金属学报, 2023, 59(8): 1065-1074.
[4] 李福林, 付锐, 白云瑞, 孟令超, 谭海兵, 钟燕, 田伟, 杜金辉, 田志凌. 初始晶粒尺寸和强化相对GH4096高温合金热变形行为和再结晶的影响[J]. 金属学报, 2023, 59(7): 855-870.
[5] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[6] 娄峰, 刘轲, 刘金学, 董含武, 李淑波, 杜文博. 轧制态Mg-xZn-0.5Er合金板材组织及室温成形性能[J]. 金属学报, 2023, 59(11): 1439-1447.
[7] 吴彩虹, 冯迪, 臧千昊, 范诗春, 张豪, 李胤樹. 喷射成形AlSiCuMg合金的热变形组织演变及再结晶行为[J]. 金属学报, 2022, 58(7): 932-942.
[8] 任少飞, 张健杨, 张新房, 孙明月, 徐斌, 崔传勇. 新型Ni-Co基高温合金塑性变形连接中界面组织演化及愈合机制[J]. 金属学报, 2022, 58(2): 129-140.
[9] 姜伟宁, 武晓龙, 杨平, 顾新福, 解清阁. 热轧硅钢表层动态再结晶区形成规律及剪切织构特征[J]. 金属学报, 2022, 58(12): 1545-1556.
[10] 胡晨, 潘帅, 黄明欣. 高强高韧异质结构温轧TWIP[J]. 金属学报, 2022, 58(11): 1519-1526.
[11] 杨平, 王金华, 马丹丹, 庞树芳, 崔凤娥. 成分对真空脱锰法相变控制高硅电工钢{100}织构的影响[J]. 金属学报, 2022, 58(10): 1261-1270.
[12] 丁宁, 王云峰, 刘轲, 朱训明, 李淑波, 杜文博. 高应变速率多向锻造Mg-8Gd-1Er-0.5Zr合金的微观组织、织构及力学性能[J]. 金属学报, 2021, 57(8): 1000-1008.
[13] 颜孟奇, 陈立全, 杨平, 黄利军, 佟健博, 李焕峰, 郭鹏达. 热变形参数对TC18钛合金β相组织及织构演变规律的影响[J]. 金属学报, 2021, 57(7): 880-890.
[14] 姜巨福, 张逸浩, 刘英泽, 王迎, 肖冠菲, 张颖. RAP法制备AlSi7Mg合金半固态坯料研究[J]. 金属学报, 2021, 57(6): 703-716.
[15] 李子晗, 忻建文, 肖笑, 王欢, 华学明, 吴东升. 热导型等离子弧焊电弧物理特性和熔池动态行为[J]. 金属学报, 2021, 57(5): 693-702.