Please wait a minute...
金属学报  2015, Vol. 51 Issue (1): 11-20    DOI: 10.11900/0412.1961.2014.00271
  本期目录 | 过刊浏览 |
服役态Cr35Ni45Nb合金高温真空渗碳行为及相演化机理研究
彭以超1, 张麦仓1(), 杜晨阳2, 董建新1
1 北京科技大学材料科学与工程学院, 北京 100083
2 中国特种设备检测研究院, 北京 100013
HIGH TEMPERATURE VACUUM CARBURIZATION BEHAVIORS AND PHASE EVOLUTION MECHANISMS OF Cr35Ni45Nb ALLOY UNDER SERVICE CONDITION
PENG Yichao1, ZHANG Maicang1(), DU Chenyang2, DONG Jianxin1
1 School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083
2 China Special Equipment Inspection and Research Institute, Beijing 100013
引用本文:

彭以超, 张麦仓, 杜晨阳, 董建新. 服役态Cr35Ni45Nb合金高温真空渗碳行为及相演化机理研究[J]. 金属学报, 2015, 51(1): 11-20.
Yichao PENG, Maicang ZHANG, Chenyang DU, Jianxin DONG. HIGH TEMPERATURE VACUUM CARBURIZATION BEHAVIORS AND PHASE EVOLUTION MECHANISMS OF Cr35Ni45Nb ALLOY UNDER SERVICE CONDITION[J]. Acta Metall Sin, 2015, 51(1): 11-20.

全文: PDF(5664 KB)   HTML
摘要: 

采用乙炔真空渗碳方式对服役6 a的乙烯裂解炉管合金Cr35Ni45Nb进行了加速渗碳处理, 并利用SEM, XRD及定量电子探针等手段对渗碳前后炉管内壁的渗碳行为及相演化机理进行系统研究. 结果表明, 炉管内表面形成了较厚的Cr2O3/SiO2复合氧化层. 复合氧化层表现出良好的抗腐蚀能力, 是阻止C渗入炉管内部的有效障碍. 材料的抗渗碳能力主要取决于表层Cr2O3的连续性、致密性和亚表层SiO2的稳定性. 在低氧分压且具有还原性的气氛中, 表层的Cr2O3层逐渐碳化为Cr3C2, 并且Cr3C2逐渐剥离和脱落, 使得保护性Cr2O3膜的抗渗碳能力逐渐减弱甚至消失. 亚表层的SiO2虽具有优良的热力学稳定性, 但Si较低的活度使得SiO2层不够连续, 仍有部分C从氧化层空隙间渗入. 当移除该复合氧化层或者渗碳时间足够长使得复合氧化层抗渗碳能力急剧减弱时, 炉管材料内部由于发生严重的内部渗碳使得组织结构发生了显著变化: 枝晶间碳化物严重合并和粗化, 并原位发生由M23C6到M7C3的转变, 同时在碳化物内部析出类似于离异共析状的蠕虫状g相. 距表面越近, C活度越高, 导致在约0.5 mm深的范围内发生以大量石墨析出为特征的金属尘化现象. 碳化物的严重合并粗化以及金属尘化现象会造成炉管组织的严重弱化、宏观裂纹的产生以及炉管服役寿命的降低.

关键词 Cr35Ni45Nb合金真空低压渗碳抗渗碳性氧化膜金属尘化    
Abstract

Carburization in Ni-Cr-Fe-based alloys is an important phenomenon, especially in ethylene cracking tubes which serve at high temperatures under highly carburizing environment. In this work, the Cr35Ni45Nb tube subjected to service condition for 6 a was carburized by low-pressure vacuum carburizing (LPVC) at 1080 ℃. The carburization behaviors and corresponding mechanisms of phase evolution in the inner wall were comprehensively analyzed through SEM, XRD and EPMA. The results showed that oxidation behaviors of the tube at high temperature were consisted of external oxidation of Cr and internal oxidation of Si, resulting in formation of composite oxide scales. Depletion of Cr in the subsurface caused by surface Cr2O3 leaded to carbide dissolution and formation of carbide free zone and carburized zone. The critical concentration of Cr for carbide dissolution is about 19.0% (mass fraction). By comparing carburization behaviors of specimens whose oxide scales were retained or removed, the carburization resistance of the composite oxide scales in carburizing environment was systematically investigated. The results showed that the composite oxide scales formed previously acted as an effective barrier to carbon infiltration. However, the outermost Cr2O3 scale tended to be carbonized to form carbide scale to spall from the surface in the strongly reducing environment with low oxygen partial pressure, while the SiO2 kept stable all along due to its excellent thermodynamic stability. However, a certain amount of carbon was still capable to penetrate the alloy interior through gaps of the SiO2 scale due to its discontinuity. Therefore, continuity, density and high-temperature stability of the oxide scales were crucial for the alloy to achieve excellent anti-carburizing performance. Once the oxide layers were removed or carbonized adequately, inconceivable internal carburization occured widely. Large amounts of secondary carbides precipitated again in the previous carbide free zone due to high carbon activity. Widespread precipitations of graphite called metal dusting in the range of about 0.5 mm in depth occurred after long exposure of specimens to the carburizing environment. The carbon activity gradually decreased with increasing distance from the surface. The primary carbides within the deeper carburized region were transformed from M23C6 to M7C3 in situ, which were accompanied by precipitation of vermicular g phase in the primary carbides, phase transition from h to NbC and decomposition of intragranular secondary carbides. Severe coalescing and coarsening of carbides and metal dusting caused the serious degradation of microstructure, formation of macro-cracks and final thinning of the Cr35Ni45Nb tube wall.

Key wordsCr35Ni45Nb alloy    low-pressure vacuum carburizing    anti-carburizing    oxide scale    metal dusting
    
ZTFLH:  TG113  
基金资助:* 国家高技术研究发展计划资助项目2012AA03A513
作者简介: null

彭以超, 男, 1989年生, 硕士生

图1  服役态Cr35Ni45Nb炉管内侧横截面的组织特征及相应的元素面分布
Position C Cr Si Ni Fe Nb O Phase
1 5.88 32.97 0.03 0.26 0.74 0.08 60.04 Cr2O3
2 9.19 0.17 25.14 0.16 0.13 0.00 65.22 SiO2
3 38.75 41.93 0.27 9.58 9.37 0.10 0 M3C2
4 0 0.72 27.17 0.94 0.79 0.06 70.31 SiO2
5 33.89 52.30 0.03 2.86 10.77 0.14 0 M7C3
6 78.75 2.05 0.13 1.61 1.12 0.03 16.31 Graphite
7 36.46 54.24 0.18 2.14 6.81 0.17 0 M3C2
8 0 32.32 0.18 0.19 0.16 0.01 67.19 Cr2O3
9? 4.10 6.40 0.74 56.34 32.39 0.03 0 g
10 1.90 14.01 0.50 51.75 31.80 0.03 0 g
11 51.32 1.11 0.79 1.65 0.42 44.71 0 NbC
12 4.17 4.72 15.07 30.62 2.64 42.78 0 h
表1  各图中所示位置的EPMA分析结果
图2  服役6 a的Cr35Ni45Nb炉管贫碳化物区元素含量线分布
图3  1080 ℃下不同时间服役态Cr35Ni45Nb的真空渗碳动力学曲线
图4  不同条件下服役6 a的Cr35Ni45Nb炉管真空渗碳后内壁横截面显微组织形貌
图5  表面存在氧化膜的Cr35Ni45Nb炉管内壁真空渗碳不同时间后的XRD谱
图6  移除表面氧化膜的服役6 a的Cr35Ni45Nb炉管真空渗碳5 h后的内部组织
图7  1080 ℃下碳化物在g基体中的固溶度曲线
图8  真空渗碳过程中不同阶段结束时内壁C浓度分布曲线
图9  服役态Cr35Ni45Nb炉管表面碳化后碳化物层剥落的表面及侧面形态
图10  高C活度下M23C6向M7C3的转变形态, 转变示意图及蠕虫状g相的EDS谱
图11  金属尘化产生的宏观裂纹形貌
[1] Khodamorad S H, Haghshenas F D, Rezaie H, Sadeghipour A. Eng Fail Anal, 2012; 21: 1
[2] Al-Meshari A, Al-Rabie M, Al-Dajane M. J Fail Anal Prev, 2013; 13: 282
[3] Tari V, Najafizadeh A, Aghaei M, Mazloumi M. J Fail Anal Prev, 2009; 9: 316
[4] Zhang J, Young D J. Oxid Met, 2008; 70(3-4): 189
[5] Chauhan A, Anwar M, Montero K, White H, Si W. J Phase Equilib Diff, 2006; 27: 684
[6] Mitchell D, Young D, Kleemann W. Mater Corros, 1998; 49: 231
[7] Ramanarayanan T, Petkovic R, Mumford J, Ozekcin A. Mater Corros, 1998; 49: 226
[8] Rahmel A, Grabke H, Steinkusch W. Mater Corros, 1998; 49: 221
[9] Oquab D, Xu N, Monceau D, Young D. Corros Sci, 2010; 52: 255
[10] Kaya A A. Mater Charact, 2002; 49: 23
[11] Grabke H, Wolf I. Mater Sci Eng, 1987; A87: 23
[12] Giggins C, Pettit F. Oxid Met, 1980; 14: 363
[13] Borjali S, Allahkaram S R, Khosravi H. Mater Des, 2012; 34: 65
[14] Mostafaei M, Shamanian M, Purmohamad H, Amini M, Saatchi A. Eng Fail Anal, 2011; 18: 164
[15] Paz J N, Grabke H. Oxid Met, 1993; 39: 437
[16] Petkovic-Luton R, Ramanarayanan T. Oxid Met, 1990; 34: 381
[17] Hermse C, Asteman H, IJzerman R, Jakobi D. Mater Corros, 2013; 64: 856
[18] Sustaita-Torres I A, Haro-Rodríguez S, Guerrero-Mata M P, de la Garza M, Valdés E, Deschaux-Beaume F, Colás R. Mater Chem Phys, 2012; 133: 1018
[19] Kunzru D. In: Sara R K, Ray S, Maity B R, Ganguly S, Bhattacharyya D, Chakraborty S L eds., Petroleum Refining and Petrochemical Based Industries in Eastern India, New Delhi: Allied Publishers Ltd., 2000: 14
[20] Kaya A, Krauklis P, Young D. Mater Charact, 2002; 49: 11
[21] Bennett M, Price J. J Mater Sci, 1981; 16: 170
[22] Song R K, Zhang M C, Dong J X, Du C Y. Adv Mater Res, 2014; 834: 390
[23] Ryzhov N, Smirnov A, Fakhurtdinov R, Mulyakaev L, Gromov V. Met Sci Heat Treat, 2004; 46: 230
[24] Ramanarayanan T, Srolovitz D. J Electrochem Soc, 1985; 132: 2268
[25] Wagner C. J Electrochem Soc, 1952; 99(10): 369
[1] 沈朝, 王志鹏, 胡波, 李德江, 曾小勤, 丁文江. 镁合金抗高温氧化机理研究进展[J]. 金属学报, 2023, 59(3): 371-386.
[2] 刘来娣, 丁彪, 任维丽, 钟云波, 王晖, 王秋良. DZ445镍基高温合金高温长时间氧化形成的多层膜结构[J]. 金属学报, 2023, 59(3): 387-398.
[3] 徐文国, 郝文江, 李应举, 赵庆彬, 卢炳聿, 郭和一, 刘天宇, 冯小辉, 杨院生. 微量AlTiInconel 690合金高温氧化行为的影响[J]. 金属学报, 2023, 59(12): 1547-1558.
[4] 孙蓉蓉, 姚美意, 林晓冬, 张文怀, 仇云龙, 胡丽娟, 谢耀平, 杨健, 董建新, 成国光. 添加TiFe22Cr5Al3Mo合金在500℃过热蒸汽中腐蚀行为的影响[J]. 金属学报, 2022, 58(5): 610-622.
[5] 林晓冬, 马海滨, 任啟森, 孙蓉蓉, 张文怀, 胡丽娟, 梁雪, 李毅丰, 姚美意. Fe13Cr5Al4Mo合金在高温高压水环境中的腐蚀行为[J]. 金属学报, 2022, 58(12): 1611-1622.
[6] 钱月,孙蓉蓉,张文怀,姚美意,张金龙,周邦新,仇云龙,杨健,成国光,董建新. NbFe22Cr5Al3Mo合金显微组织和耐腐蚀性能的影响[J]. 金属学报, 2020, 56(3): 321-332.
[7] 包飞洋, 李艳芬, 王光全, 张家榕, 严伟, 石全强, 单以银, 杨柯, 许斌, 宋丹戎, 严明宇, 魏学栋. ODS钢在600700 ℃静态Pb-Bi共晶中的腐蚀行为及机理[J]. 金属学报, 2020, 56(10): 1366-1376.
[8] 张笑一, 尚海龙, 马冰洋, 李荣斌, 李戈扬. 镀膜Al箔钎料对AlN陶瓷的钎焊[J]. 金属学报, 2018, 54(4): 575-580.
[9] 杨忠波,赵文金,程竹青,邱军,张海,卓洪. Nb含量对 Zr-xNb-0.4Sn-0.3Fe合金耐腐蚀性能的影响[J]. 金属学报, 2017, 53(1): 47-56.
[10] 王家贞,王俭秋,韩恩厚. 800合金在300 ℃ NaOH和ETA溶液中的腐蚀行为*[J]. 金属学报, 2016, 52(5): 599-606.
[11] 欧美琼,刘扬,查向东,马颖澈,程乐明,刘奎. 一种新型镍基合金在超临界多种离子共存环境下的腐蚀行为*[J]. 金属学报, 2016, 52(12): 1557-1564.
[12] 王俭秋, 黄发, 柯伟. Inconel 690TT和Incoloy 800MA蒸汽发生器管材在高温高压水中的腐蚀行为研究*[J]. 金属学报, 2016, 52(10): 1333-1344.
[13] 苟少秋,周邦新,谢世敬,徐龙,姚美意,李强. Zr-4合金在LiOH水溶液中腐蚀时氧化膜生长各向异性的研究*[J]. 金属学报, 2015, 51(8): 993-1000.
[14] 张志明, 王俭秋, 韩恩厚, 柯伟. 电解抛光态690TT合金在顺序溶氢/溶氧的高温高压水中表面氧化膜结构分析[J]. 金属学报, 2015, 51(1): 85-92.
[15] 章海霞, 李中奎, 周廉, 许并社, 王永祯. 氧化膜结构及内应力对新锆合金腐蚀机理的影响[J]. 金属学报, 2014, 50(12): 1529-1537.