Please wait a minute...
金属学报  2015, Vol. 51 Issue (1): 31-39    DOI: 10.11900/0412.1961.2014.00265
  本期目录 | 过刊浏览 |
(Nb, Ti)C在轧后卷取中的析出及对铁素体相微观力学特征的影响
徐洋, 孙明雪, 周砚磊, 刘振宇()
东北大学轧制技术及连轧自动化国家重点实验室, 沈阳 110819
PRECIPITATION BEHAVIOR OF (Nb, Ti)C IN COILING PROCESS AND ITS EFFECT ON MICRO-MECHANICAL CHARACTERISTICS OF FERRITE
XU Yang, SUN Mingxue, ZHOU Yanlei, LIU Zhenyu()
State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819
引用本文:

徐洋, 孙明雪, 周砚磊, 刘振宇. (Nb, Ti)C在轧后卷取中的析出及对铁素体相微观力学特征的影响[J]. 金属学报, 2015, 51(1): 31-39.
Yang XU, Mingxue SUN, Yanlei ZHOU, Zhenyu LIU. PRECIPITATION BEHAVIOR OF (Nb, Ti)C IN COILING PROCESS AND ITS EFFECT ON MICRO-MECHANICAL CHARACTERISTICS OF FERRITE[J]. Acta Metall Sin, 2015, 51(1): 31-39.

全文: PDF(13492 KB)   HTML
摘要: 

以复合添加Nb和Ti的微合金钢为研究对象, 采用热模拟、显微硬度、透射电镜以及纳米压痕技术等方法对实验钢在连续冷却条件下和卷取过程中的冷却速率对组织演变及显微硬度的影响进行观察和分析, 研究了(Nb, Ti)C在卷取中的析出规律及其对铁素体相微观力学性能的影响. 结果表明, 连续冷却和卷取过程中的冷却速率的增加都能促进Nb-Ti实验钢从铁素体+珠光体组织向贝氏体组织转变, 细化铁素体晶粒. 在连续冷却条件下, 实验钢的显微硬度随着冷却速率的增加逐渐升高, 而在卷取过程中由于较小冷却速率能够促进(Nb, Ti)C在铁素体中的形核和长大使得铁素体中存在大量均匀弥散分布的纳米析出物, 提高了基体的强度, 因此随着卷取过程中冷却速率的增加实验钢的显微硬度呈现降低的趋势. Nb-Ti实验钢中铁素体相的纳米硬度为4.13 GPa, Young's模量为249.3 GPa, 普通C-Si-Mn钢铁素体相的纳米硬度为2.64 GPa, Young's模量为237.4 GPa, 纳米析出物对铁素体相的纳米硬度的贡献达到1.49 GPa.

关键词 纳米析出物冷却速率纳米压痕纳米硬度Young's模量    
Abstract

High strength micro-alloyed steel has been widely used in automobile and machines because of the remarkable high strength and forming property which are attributed to nano-precipitates and refinement of the organization. Since the nano-precipitates are mostly nucleated between austenite/ferrite transition and ferrite can significantly advance strength, it is important to investigate precipitate behavior in coiling process. Nanoindentation technology provides a chance to study the special influence of nano-precipitates on the micro-properties of ferrite. The effect of cooling rate during continuous cooling process and coiling process on microstructural evolution and micro-hardness of Nb-Ti micro-alloyed steel were studied by using the thermal mechanical simulator, micro-hardness instrument, TEM and nanoindentation instrument. The precipitate behaviors of (Nb,Ti)C in coiling process and its effect on nano-hardnesss of ferrite were discussed. Experiments results indicated that the increase of cooling rate in continuous cooling process and coiling process could promote the microstructure transition from ferrite and pearlite to bainite. The micro-hardness of the tested steel increased with the increase of cooling rate in continuous cooling process, and decreased with the cooling rate in coiling process because of the large number of the dispersive nano-precipitate in ferrite which could improve the strength of matrix. The smaller cooling rate could promote volume fraction of (Nb, Ti)C particles in ferrite because there was enough time for the nucleation and growth of (Nb, Ti)C precipitates. When the cooling rate in coiling process was 0.1 ℃/s, precipitates were dispersive in ferrite matrix with a diameter of less than 10 nm. The nanohardness and Young's modulus of ferrite were 4.13 and 249.3 GPa for Nb-Ti micro-alloyed steel, 2.64 and 237.4 GPa for C-Si-Mn steel. The contribution of nano-precipitates to nano-hardness of ferrite reached 1.49 GPa.

Key wordsnano-precipitate    cooling rate    nanoindentation    nanohardness    Young's modulus
    
ZTFLH:  TG142  
基金资助:*中央高校基本科研业务费专项资金项目N120807001和N110607006资助
作者简介: null

徐 洋, 男, 1984年生, 博士生

图1  热模拟实验工艺路线
图2  CCT实验中不同冷却速率下实验钢的显微组织
图3  实验钢的CCT曲线和显微硬度随冷却速率的变化规律
图4  卷取中不同冷却速率下实验钢的显微组织及基体的显微硬度
图5  卷取中不同冷却速率下实验钢的析出形貌
图6  实验钢纳米压痕形貌和典型的载荷-深度曲线
图7  压头周围位错运动示意图
[1] Charleux M, Poole W J, Militzer M, Deschamps A. Metall Trans, 2001; 32A: 1635
[2] Funakawa Y, Shiozaki T, Tomita K, Yamamoto T, Maeda E. ISIJ Int, 2004; 44: 1945
[3] Matlock D K, Krauss G, Speer J G. J. Mater Proc Technol, 2001; 117: 324
[4] Wang C J, Yong Q L, Sun X J, Mao X P, Li Z D, Yong X. Acta Metall Sin, 2011; 47: 1541
[4] (王长军, 雍岐龙, 孙新军, 毛新平, 李昭东, 雍 兮. 金属学报, 2011; 47: 1541)
[5] Liu Y C, Zhu F X, Li Y M, Wang G D. ISIJ Int, 2005; 45: 851
[6] Craven A J, He K, Garvie L A J, Baker T N. Acta Mater, 2000; 48: 3857
[7] Han Y, Shi J, Xu L, Cao W Q, Dong H. Mater Sci Eng, 2011; A530: 643
[8] Mao X P, Sun X J, Kang Y L, Lin Z Y, Zhou J. Iron Steel, 2005; 40(9): 65
[8] (毛新平, 孙新军, 康永林, 林振源, 周 建. 钢铁, 2005; 40(9): 65)
[9] Yen H W, Chen P Y, Huang C Y, Yang J R. Acta Mater, 2011; 59: 6264
[10] Yen H W, Chen C Y, Wang T Y, Huang C Y, Yang J R. Mater Sci Technol, 2010; 26: 421
[11] Okamoto R, Borgenstam A, Agren J. Acta Mater, 2010; 58: 4783
[12] Okamoto R, Agen J. Acta Mater, 2010; 58: 4791
[13] Lu J X, Wang G D. Iron Steel, 2005; 40(9): 69
[13] (陆匠心, 王国栋. 钢铁, 2005; 40(9): 69)
[14] Duan X G, Cai Q W, Wu H B. Acta Metall Sin, 2011; 47: 251
[14] (段修刚, 蔡庆伍, 武会宾. 金属学报, 2011; 47: 251)
[15] Yong Q L. Secondary Phases in Steels. Beijing: Metallurgical Industry Press, 2006: 384
[15] (雍岐龙. 钢铁材料中的第二相. 北京: 冶金工业出版社, 2006: 384)
[16] Yi H L, Du L X, Wang G D. ISIJ Int, 2006; 46: 754.
[17] Sun C F, Cai Q W, Wu H B, Mao H Y, Chen H Z. Acta Metall Sin, 2012; 48: 1451
[17] (孙超凡, 蔡庆伍, 武会宾, 毛红艳, 陈宏振. 金属学报, 2012; 48: 1415)
[18] Misra R D K, Nathani H, Hartmanm J E, Siciliano F. Mater Sci Eng, 2005; A394: 339
[19] Hong S G, Kang K B, Park C G. Scr Mater, 2002; 46: 163
[20] Wang X N, Di H S, Du L X. Acta Metall Sin, 2012; 48: 621
[20] (王晓南, 邸洪双, 杜林秀. 金属学报, 2012; 48: 621)
[21] Park D B, Huh M Y, Shim J H, Suh J Y, Lee K H, Jung W S. Mater Sci Eng, 2013; A560: 528
[22] Murakami T, Hatano H, Miymoto G, Furuhara T. ISIJ Int, 2012; 52: 616
[23] Bhadeshia H K D H. Bainite in Steels. London: IOM Communications Ltd, 2001: 19
[24] Bhadeshia H K D H, Christian J W. Metall Trans, 1990; 21A: 767
[25] Kulkarni A V, Bhushan B. Thin Solid Films, 1996; 290-291: 206
[1] 王法, 江河, 董建新. 高合金化GH4151合金复杂析出相演变行为[J]. 金属学报, 2023, 59(6): 787-796.
[2] 张月鑫, 王举金, 杨文, 张立峰. 冷却速率对管线钢中非金属夹杂物成分演变的影响[J]. 金属学报, 2023, 59(12): 1603-1612.
[3] 李闪闪, 陈云, 巩桐兆, 陈星秋, 傅排先, 李殿中. 冷速对高碳铬轴承钢液析碳化物凝固析出机制的影响[J]. 金属学报, 2022, 58(8): 1024-1034.
[4] 朱彬, 杨兰, 刘勇, 张宜生. 基于纳米压痕逆算法的热冲压马氏体/贝氏体双相组织的微观力学性能[J]. 金属学报, 2022, 58(2): 155-164.
[5] 兰亮云, 孔祥伟, 邱春林, 杜林秀. 基于多尺度力学实验的氢脆现象的最新研究进展[J]. 金属学报, 2021, 57(7): 845-859.
[6] 孙小钧, 何杰, 陈斌, 赵九洲, 江鸿翔, 张丽丽, 郝红日. Fe含量对Zr60Cu40-xFex相分离非晶合金组织结构、电阻性能和纳米压痕行为的影响[J]. 金属学报, 2021, 57(5): 675-683.
[7] 刘继召, 黄鹤飞, 朱振博, 刘阿文, 李燕. 氙离子辐照后Hastelloy N合金的纳米硬度及其数值模拟[J]. 金属学报, 2020, 56(5): 753-759.
[8] 王希,刘仁慈,曹如心,贾清,崔玉友,杨锐. 冷却速率对β凝固γ-TiAl合金硼化物和室温拉伸性能的影响[J]. 金属学报, 2020, 56(2): 203-211.
[9] 刘艳梅, 王铁钢, 郭玉垚, 柯培玲, 蒙德强, 张纪福. Ti-B-N纳米复合涂层的设计、制备及性能[J]. 金属学报, 2020, 56(11): 1521-1529.
[10] 李亚强, 刘建华, 邓振强, 仇圣桃, 张佩, 郑桂芸. 15CrMoG钢包晶凝固特征与机制[J]. 金属学报, 2020, 56(10): 1335-1342.
[11] 黄森森,马英杰,张仕林,齐敏,雷家峰,宗亚平,杨锐. α+β两相钛合金元素再分配行为及其对显微组织和力学性能的影响[J]. 金属学报, 2019, 55(6): 741-750.
[12] 郭军力, 文光华, 符姣姣, 唐萍, 侯自兵, 谷少鹏. 冷却速率对包晶钢凝固过程中包晶转变收缩的影响[J]. 金属学报, 2019, 55(10): 1311-1318.
[13] 赵鹏越, 郭永博, 白清顺, 张飞虎. 基于微观结构的多晶Cu纳米压痕表面缺陷研究[J]. 金属学报, 2018, 54(7): 1051-1058.
[14] 张可, 李昭东, 隋凤利, 朱正海, 章小峰, 孙新军, 黄贞益, 雍岐龙. 冷却速率对Ti-V-Mo复合微合金钢组织转变及力学性能的影响[J]. 金属学报, 2018, 54(1): 31-38.
[15] 徐宏扬,柯海波,黄火根,张培,张鹏国,刘天伟. U65Fe30Al5非晶合金的纳米压痕蠕变行为研究[J]. 金属学报, 2017, 53(7): 817-823.