Please wait a minute...
金属学报  2014, Vol. 50 Issue (12): 1529-1537    DOI: 10.11900/0412.1961.2014.00261
  本期目录 | 过刊浏览 |
氧化膜结构及内应力对新锆合金腐蚀机理的影响
章海霞1,2(), 李中奎3, 周廉3, 许并社1,2, 王永祯4
1 太原理工大学新材料工程与技术研究中心, 太原 030024
2 太原理工大学新材料界面科学与工程教育部重点实验室, 太原 030024
3 西北有色金属研究院, 西安 710016
4 太原理工大学材料科学与工程学院, 太原 030024
EFFECTS OF STRUCTURE AND INTERNAL STRESSES IN OXIDE FILMS ON CORROSION MECHANISM OF NEW ZIRCONIUM ALLOY
ZHANG Haixia1,2(), LI Zhongkui3, ZHOU Lian3, XU Bingshe1,2, WANG Yongzhen4
1 Research Center of Advanced Materials Science and Technology, Taiyuan University of Technology, Taiyuan 030024
2 Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024
3 Northwest Institute for Nonferrous Metal Research, Xi′an 710016
4 College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024
引用本文:

章海霞, 李中奎, 周廉, 许并社, 王永祯. 氧化膜结构及内应力对新锆合金腐蚀机理的影响[J]. 金属学报, 2014, 50(12): 1529-1537.
Haixia ZHANG, Zhongkui LI, Lian ZHOU, Bingshe XU, Yongzhen WANG. EFFECTS OF STRUCTURE AND INTERNAL STRESSES IN OXIDE FILMS ON CORROSION MECHANISM OF NEW ZIRCONIUM ALLOY[J]. Acta Metall Sin, 2014, 50(12): 1529-1537.

全文: PDF(2484 KB)   HTML
摘要: 

采用XRD和Raman光谱技术对NZ2锆合金在360 ℃, 18.6 MPa含锂水和400 ℃, 10.3 MPa蒸汽中腐蚀不同时间后氧化膜的内应力及晶体结构进行测试, 通过SEM对氧化膜的显微结构进行表征. 结果表明, 随着腐蚀时间的延长, NZ2合金氧化膜中四方相含量不断降低, 单斜相含量不断升高, 发生四方相向单斜相转变. 当氧化膜厚度达到2 mm时, 出现了立方相. 氧化膜中四方相含量越高, 锆合金的耐腐蚀性能越好. 氧化膜内应力及显微结构的研究结果表明, NZ2合金氧化膜内有高的压应力存在. 氧化开始阶段, 随着腐蚀过程的进行, 氧化膜内部压应力增加. 当氧化膜厚度达到2 mm时, 氧化膜中压应力超过临界值, 氧化膜发生破裂, 应力释放发生. 裂纹降低了氧化膜的保护性, 腐蚀转折发生. 转折后氧化膜内压应力很低, 而且基本保持恒定. 因此, 腐蚀转折与氧化膜内压应力的突然释放密切相关. 氧化膜中压应力越高, 四方相越稳定, 耐腐蚀性能越好. 同时, 探索了氧化膜中四方相和立方相的稳定机理, 建立了新锆合金的腐蚀机理模型.

关键词 锆合金氧化膜内应力晶体结构腐蚀机理    
Abstract

The corrosion resistance of new zirconium alloys containing Nb, used as the fuel cladding materials in water-cooled nuclear power reactors, is closely related to the characteristics of the oxide films, including the internal stresses and the crystal structure. However, the relation of the corrosion kinetics to the internal stresses and the crystal structure of the oxide films has not been well understood, also the corrosion mechanism of new zirconium alloys has not been confirmed. Therefore, it is helpful to solve the above problems, furthermore improve the corrosion resistance of new zirconium alloys, to characterize the internal stresses and the crystal structure of the oxide films accurately. The internal stresses and the crystal structure of the oxide films of NZ2 zirconium alloy, corroded in 360 ℃, 18.6 MPa lithiated water and 400 ℃, 10.3 MPa steam, were tested by XRD and Raman spectroscopy, and the microstructure of the oxide films was investigated by SEM. The results of the crystal structure show that tetragonal ZrO2 (t-ZrO2) content in the oxide films of NZ2 alloy decreases, monoclinic ZrO2 (m-ZrO2) content increases with the prolongation of the corrosion time, t-ZrO2 transforms into m-ZrO2. And cubic ZrO2 (c-ZrO2) appears in the oxide films when the thickness of the oxide films reaches 2 mm. Corrosion resistance of NZ2 alloy is improved when the content of t-ZrO2 in the oxide films increases. The results of the internal stresses and the microstructure of the oxide films indicate that the high compressive stresses exist in the oxide films. At the beginning of the corrosion, the compressive stresses in the oxide films increase with the corrosion time. When the thickness of the oxide films reaches 2 mm, the compressive stresses exceed the critical value and the stresses are released. The stress relaxation leads to the formation of the cracks, which reduces the protection of the oxide films, therefore the corrosion transition occurs. After the transition, the compressive stresses of the oxide films are constantly low. So the corrosion transition is closely related to the relaxation of the compressive stresses. The high compressive stresses and t-ZrO2 content are corresponding to the good corrosion resistance. Also the stabilization mechanisms of t-ZrO2 and c-ZrO2 are explored, finally the corrosion mechanism of new zirconium alloys is established.

Key wordszirconium alloy    oxide film    internal stress    crystal structure    corrosion mechanism
    
ZTFLH:  TG146.4  
基金资助:* 国家自然科学基金项目51372160和51242007, 山西省回国留学人员科研项目2011-031及山西省留学人员科技活动择优项目[2011]762资助
作者简介: null

章海霞, 女, 1977年生, 副教授, 博士

图1  NZ2合金在360 ℃含锂水中腐蚀不同时间后的d-sin2ψ曲线
图2  NZ2合金在400 ℃蒸汽中腐蚀不同时间后的d-sin2ψ曲线
图3  NZ2合金在360 ℃含锂水和400 ℃蒸汽中腐蚀后氧化膜内应力随厚度的变化规律
Condition Time / d Mass gain / (mgcm-2) Oxide film thickness μm p Stress / GPa
360 ℃ 3 0.1288 0.9 - -
lithiated water 14 0.1850 1.2 -0.01318 -2.2
28 0.2285 1.5 -0.01879 -3.1
42 0.2592 1.7 -0.01695 -2.8
70 0.3020 2.0 -0.02284 -3.8
98 0.3453 2.3 -0.01491 -2.5
126 0.3785 2.5 -0.01483 -2.4
154 0.5856 3.9 -0.01113 -1.8
182 0.6808 4.5 - -
210 0.7290 4.9 -0.01011 -1.7
238 0.7728 5.2 -0.01171 -1.9
266 0.9000 6.0 -0.01093 -1.8
294 1.0415 6.9 -0.01022 -1.7
400 ℃ steam 3 0.1700 1.1 -0.01195 -2.0
14 0.2614 1.7 -0.01521 -2.5
28 0.3242 2.2 -0.01740 -2.9
42 0.3747 2.5 -0.01303 -2.1
70 0.5163 3.4 - -
98 0.6232 4.2 -0.00859 -1.4
126 0.7297 4.9 - -
154 0.8247 5.5 -0.00981 -1.6
238 1.1614 7.7 -0.00980 -1.6
266 1.1965 8.0 -0.00929 -1.5
表1  NZ2合金在360 ℃含锂水和400 ℃蒸汽中腐蚀不同时间后的参数
图4  NZ2合金在360 ℃含锂水中腐蚀3 d后氧化膜的SEM像
图5  NZ2合金在360 ℃含锂水中腐蚀294 d后氧化膜的SEM像
图6  NZ2合金在360 ℃含锂水中腐蚀不同时间后氧化膜的XRD谱
图7  NZ2合金在400 ℃蒸汽中腐蚀不同时间后氧化膜的XRD谱
图8  NZ2合金在360 ℃锂水和400 ℃蒸汽中腐蚀时间与四方相含量的关系图
图9  NZ2合金在360 ℃含锂水中腐蚀14 d后氧化膜的Raman光谱
Position / cm-1 Relative intensity Shift / cm-1 Attribution
177.6 100 -0.2 M
187.4 77.6 2.1 M
221.0 22.4 0.4 M
278.1 28.5 -11.0 T
334.0 56.7 -1.5 M
379.9 15.6 1.2 M
439.1 31.0 16.9 T
476.9 71.5 -2.3 M
503.8 31.0 -3.6 M
532.9 25.9 4.2 M
556.3 15.4 1.6 M
619.0 34.3 -3.8 M
637.9 36.1 -0.3 M
表2  NZ2合金在360 ℃含锂水中腐蚀后14 d后氧化膜的Raman光谱峰位置、相对强度及峰偏移
图10  新锆合金腐蚀机理模型
[1] Baek J H, Jeong Y H, Kim I S. J Nucl Mater, 2000; 28: 235
[2] Yilmazbayhan A, Motta A T, Comstock R J, Sabol G P, Lai B, Cai Z H. J Nucl Mater, 2004; 324: 6
[3] Maixner J, Krýsa J, Matějka P, Vrtilková V. Mater Sci Forum, 2000; 321-324: 737
[4] Godlewski J, Gros J P, Lambertin M, Wadier J F, Weidinger H. Zirconium in the Nuclear Industry: Ninth International Symposium, Kobe: ASTM International, 1991: 416
[5] Takeda K, Anada H. Zirconium in the Nuclear Industry: Twelfth International Symposium, Toroton: ASTM International, 2000: 592
[6] Krýsa J, Maixner J, Matějka P, Vrtílková V. Mater Chem Phys, 2000; 63: 1
[7] Arima T, Miyata K, Inagaki Y, Idemitsu K. Corros Sci, 2005; 47: 435
[8] Zhiyaev A P, Szpunar J A. J Nucl Mater, 1999; 264: 327
[9] Pétigny N, Barberis P, Lemaignan C, Valot C, Lallemant M. J Nucl Mater, 2000; 280: 318
[10] Oskarsson M, Ahlberg E, Andersson U, Pettersson K. J Nucl Mater, 2001; 297: 77
[11] Liu W Q, Li Q, Zhou B X. Rare Met Mater Sci Eng, 2001; 30: 81
[11] (刘文庆, 李 强, 周邦新. 稀有金属材料与工程, 2001; 30: 81)
[12] Godlewski J, Bouvier P, Fayette L. Zirconium in the Nuclear Industry: Twelfth International Symposium, West Conshohoeken, PA: ASTM International, 2000: 877
[13] Hong H S, Kim S J, Lee K S. J Nucl Mater, 1999; 273: 177
[14] Liu W Q, Li Q, Zhou B X. Rare Met Mater Sci Eng, 2004; 33: 1112
[14] (刘文庆, 李 强, 周邦新. 稀有金属材料与工程, 2004; 33: 1112)
[15] Shao S Y. Laser Opt Prog, 2005; 42(1): 22
[15] (邵淑英. 激光与光电子学进展, 2005; 42(1): 22)
[16] Anada H, Takeda K. Zirconium in the Nuclear Industry: Eleventh International Symposium, West Conshohoeken, PA: ASTM International, 1996: 35
[17] Weidinger H G, Ruhmann H, Cheliotis G, Maguire M, Yau T L. Zirconium in the Nuelear Industly: Ninth International Symposium, Kobe: ASTM International, 1991: 499
[18] Bechade J L, Goudeau P, Gailhanou M, Yvon O. High Temp Mater Proc, 1998; 2: 359
[19] Gosmain L, Valot C, Ciosmak D, Sicardy O. Solid State Ionics, 2001; 141-142: 633
[20] Wang D N, Guo Y Q, Liang K M, Tao K. Science in China, 1998; 28A: 823
[20] (王大宁, 郭永权, 梁开明, 陶 琨. 中国科学, 1998; 28A: 823 )
[21] Garvie R C, Nicholson P S. J Am Ceram Soc, 1972; 55: 303
[22] Steinberg E, Weidinger H G, Schaa A. Zirconium in the Nuclear Industry: Sixth International Symposium, Vancouver: ASTM International, 1984: 106
[23] Barberis P, Merle-Méjean T, Quintard P. J Nucl Mater, 1997; 246: 232
[24] Zhang H X, Li Z K, Xu B S, Wang Y Z, Zhou L. J Funct Mater, 2014; 85: 02001
[24] (章海霞, 李中奎, 许并社, 王永祯, 周 廉. 功能材料, 2014; 85: 02001)
[25] Stapper G, Bernasconi M, Nicoloso N, Parrinello M. Phys Rev, 1999; 59B: 797
[1] 刘来娣, 丁彪, 任维丽, 钟云波, 王晖, 王秋良. DZ445镍基高温合金高温长时间氧化形成的多层膜结构[J]. 金属学报, 2023, 59(3): 387-398.
[2] 沈朝, 王志鹏, 胡波, 李德江, 曾小勤, 丁文江. 镁合金抗高温氧化机理研究进展[J]. 金属学报, 2023, 59(3): 371-386.
[3] 廖京京, 张伟, 张君松, 吴军, 杨忠波, 彭倩, 邱绍宇. Zr-Sn-Nb-Fe-V合金在过热蒸汽中的周期性钝化-转折行为[J]. 金属学报, 2023, 59(2): 289-296.
[4] 徐文国, 郝文江, 李应举, 赵庆彬, 卢炳聿, 郭和一, 刘天宇, 冯小辉, 杨院生. 微量AlTiInconel 690合金高温氧化行为的影响[J]. 金属学报, 2023, 59(12): 1547-1558.
[5] 孙蓉蓉, 姚美意, 林晓冬, 张文怀, 仇云龙, 胡丽娟, 谢耀平, 杨健, 董建新, 成国光. 添加TiFe22Cr5Al3Mo合金在500℃过热蒸汽中腐蚀行为的影响[J]. 金属学报, 2022, 58(5): 610-622.
[6] 林晓冬, 马海滨, 任啟森, 孙蓉蓉, 张文怀, 胡丽娟, 梁雪, 李毅丰, 姚美意. Fe13Cr5Al4Mo合金在高温高压水环境中的腐蚀行为[J]. 金属学报, 2022, 58(12): 1611-1622.
[7] 钱月,孙蓉蓉,张文怀,姚美意,张金龙,周邦新,仇云龙,杨健,成国光,董建新. NbFe22Cr5Al3Mo合金显微组织和耐腐蚀性能的影响[J]. 金属学报, 2020, 56(3): 321-332.
[8] 姚美意,张兴旺,侯可可,张金龙,胡鹏飞,彭剑超,周邦新. Zr-0.75Sn-0.35Fe-0.15Cr合金在250 ℃去离子水中的初期腐蚀行为[J]. 金属学报, 2020, 56(2): 221-230.
[9] 包飞洋, 李艳芬, 王光全, 张家榕, 严伟, 石全强, 单以银, 杨柯, 许斌, 宋丹戎, 严明宇, 魏学栋. ODS钢在600700 ℃静态Pb-Bi共晶中的腐蚀行为及机理[J]. 金属学报, 2020, 56(10): 1366-1376.
[10] 姚美意, 林雨晨, 侯可可, 梁雪, 胡鹏飞, 张金龙, 周邦新. Sn对锆合金在280 LiOH水溶液中初期腐蚀行为的影响[J]. 金属学报, 2019, 55(12): 1551-1560.
[11] 张笑一, 尚海龙, 马冰洋, 李荣斌, 李戈扬. 镀膜Al箔钎料对AlN陶瓷的钎焊[J]. 金属学报, 2018, 54(4): 575-580.
[12] 郭腾, 李洪涛, 蒋百灵, 邢益彬, 张新宇. 离子镀过程中基体“热影响区”的演变及其对镀层的影响[J]. 金属学报, 2018, 54(3): 463-469.
[13] 陈兵,高长源,黄娇,毛亚婧,姚美意,张金龙,周邦新,李强. β-(Nb, Zr)第二相合金在360 ℃去离子水中的腐蚀行为[J]. 金属学报, 2017, 53(4): 447-454.
[14] 任伊宾, 李俊, 王青川, 杨柯. MRI磁兼容合金研究[J]. 金属学报, 2017, 53(10): 1323-1330.
[15] 杨忠波,赵文金,程竹青,邱军,张海,卓洪. Nb含量对 Zr-xNb-0.4Sn-0.3Fe合金耐腐蚀性能的影响[J]. 金属学报, 2017, 53(1): 47-56.