Please wait a minute...
金属学报  2014, Vol. 50 Issue (12): 1478-1484    DOI: 10.11900/0412.1961.2014.00248
  本期目录 | 过刊浏览 |
750 ℃热暴露对定向层片组织铸造TiAl合金室温拉伸塑性的影响
朱春雷, 李胜, 李海昭, 张继()
钢铁研究总院高温合金新材料北京市重点实验室, 北京 100081
EFFECT OF THERMAL EXPOSURE AT 750 ℃ ON ROOM TEMPERATURE TENSILE DUCTILITY OF CAST TiAl ALLOY WITH DIRECTIONAL LAMELLAR MICROSTRUCTURE
ZHU Chunlei, LI Sheng, LI Haizhao, ZHANG Ji()
Beijing Key Laborary of Advanced High Temperature Materials, Central Iron and Steel Research Institute,Beijing 100081
引用本文:

朱春雷, 李胜, 李海昭, 张继. 750 ℃热暴露对定向层片组织铸造TiAl合金室温拉伸塑性的影响[J]. 金属学报, 2014, 50(12): 1478-1484.
Chunlei ZHU, Sheng LI, Haizhao LI, Ji ZHANG. EFFECT OF THERMAL EXPOSURE AT 750 ℃ ON ROOM TEMPERATURE TENSILE DUCTILITY OF CAST TiAl ALLOY WITH DIRECTIONAL LAMELLAR MICROSTRUCTURE[J]. Acta Metall Sin, 2014, 50(12): 1478-1484.

全文: PDF(3565 KB)   HTML
摘要: 

研究了大气中750 ℃, 48~300 h热暴露对定向层片组织铸造TiAl合金室温拉伸塑性的影响, 并采用拉伸中途卸载、染色渗透后再次加载直至断裂的方法, 分析因表面脆性层诱发的微裂纹的形成和扩展行为, 以揭示定向层片组织在热暴露后保持更好室温拉伸塑性的原因. 结果表明, 定向层片组织TiAl合金在750 ℃热暴露150 h后室温塑性仍大于2.0%, 300 h热暴露后尚保持1.0%的水平, 其热暴露致脆程度远小于双态组织和其它层片组织. 在430 MPa应力下, 微裂纹起源于脆性贫Al层, 并在后续加载过程中扩展进入基体. 此裂纹起到尖锐缺口的作用, 约束了材料的塑性变形, 导致TiAl合金室温拉伸塑性降低. 对于定向层片组织, 由于层片界面平行于基体表面, 有利于抑制微裂纹在后续加载过程中向基体扩展, 从而使合金在热暴露后保持较高的室温塑性.

关键词 TiAl合金定向层片组织热暴露室温塑性微裂纹    
Abstract

The effect of thermal exposure on room temperature tensile ductility of cast TiAl alloy with directional lamellar microstructure was evaluated at 750 ℃ for 48~300 h in atmosphere. By preloading, unloading, dye-penetrating followed by reloading until fracture for exposed samples, initiation and propagation behavior of the microcrack triggered by surface brittle layer was mainly analyzed in order to explain that the directional lamellar structure retains a better ductility at room temperature after thermal exposure. The results show that room temperature tensile ductility is still retained above 2.0% and 1.0% after exposure for 150 and 300 h at 750 ℃, respectively. The embrittlement of the directional lamellar microstructure caused by thermal exposure is much less than that of duplex microstructure and the other lamellar microstructures. At a stress of 430 MPa, the microcrack forms at the Al-depleted brittle layer and propagates into the substrate during subsequent loading. Just as the sharp notch, the microcrack can constrain the plastic deformation, which is the main mechanism of the brittlement for TiAl alloy by thermal exposure. The directional lamellar microstructure with the lamellae interface parallel to the substrate surface is obtained, which is good for restraining the micro-crack propagation into the substrate and retaining higher ductility at room temperature after thermal exposure.

Key wordsTiAl alloy    directional lamellar microstructure    thermal exposure    room temperature ductility    microcrack
    
ZTFLH:  TG146.2  
基金资助:* 国家重点基础研究发展计划资助项目2011CB605500
作者简介: null

朱春雷, 男, 1984年生, 博士

图1  在750 ℃热暴露不同时间后定向层片组织TiAl合金的室温拉伸性能
图2  750 ℃, 200 h热暴露后定向层片组织TiAl合金表面反应层的形貌
Distance from substrate / μm O Ti Al V Cr
1 0 63.88 31.36 3.61 1.15
3 5.23 60.34 30.24 3.27 0.93
5 20.78 46.22 29.73 1.80 1.48
表1  750 ℃, 200 h热暴露后贫Al层的EPMA点扫描分析结果
图3  750 ℃, 200 h热暴露后TiAl合金拉断试样断口附近的微裂纹形貌
图4  定向层片组织TiAl合金热暴露室温加载和卸载后的截面形貌
图5  500 MPa卸载后TiAl合金的截面微裂纹形貌
图6  500 MPa卸载、染色和二次加载至拉断后TiAl合金的断口形貌
图7  450 MPa卸载TiAl合金的微裂纹尖端形貌
[1] Lu M, Barrett J R, Kelly T J. In: Hemker K J, Dimiduk D M, Clemens H, Darolia R, Inui H, Larsen J M, Sikka V K, Thomas M, Whittenberger J D eds., Structural Intermetallics 2001, Warrendale PA: TMS, 2001: 225
[2] Tetsui T. Mater Sci Eng, 2002; A329-331: 582
[3] Kim Y W. Mater Sci Eng, 1995; A192-193: 519
[4] Huang S C. In: Darolia R, Lewandowski J J, Liu C T, Martin P L, Miracle D B, Nathal M V eds., Structural Intermetallics 1993, Warrendale PA: TMS, 1993: 299
[5] Dowling W E, Donlon W T. Scr Metall Mater, 1992; 27: 1663
[6] Kelly T J, Austin C M, Fink P J, Schaeffer J. Scr Metall Mater, 1994; 30: 1105
[7] Lee D S, Stucke M A, Dimiduk D M. Mater Sci Eng, 1995; A192-193: 824
[8] Draper S L, Lerch B A, Locci I E, Shazly M, Prakash V. Intermetallics, 2005; 13: 1014
[9] Pilone D, Felli F, Brotzu A. Intermetallics, 2013; 40: 131
[10] Wu X H, Huang A, Hu D, Loretto M H. Intermetallics, 2009; 17: 540
[11] Pather R, Mitten W A, Holdway P, Ubhi H S, Wisbey A, Brooks J W. Intermetallics, 2003; 11: 1015
[12] Zhang J, Zhong Z Y. Mater China, 2010; 29(2): 9
[12] (张 继, 仲增墉. 中国材料进展, 2010; 29(2): 9)
[13] Zhu C L, Zhang X W, Li S, Zhang J. Rare Met Mater Eng, 2014; 43(9): 2124
[13] (朱春雷, 张熹雯, 李 胜, 张 继. 稀有金属材料与工程, 2014; 43(9): 2124)
[14] Planck S K, Rosenberger A H. Mater Sci Eng, 2002; A325: 270
[15] Shida Y, Anada H. Corros Sci, 1993; 35(5~8): 945
[16] Lu W, Chen C L, Xi Y J, Wang F H, He L L. Intermetallics, 2007; 15: 989
[17] Yokoshima S, Yamaguchi M. Acta Mater, 1996; 44: 873
[18] Thomas M, Berteaux O, Popoff F, Bacos M P, Morel A, Passilly B, Ji V. Intermetallics, 2006; 14: 1143
[1] 李小兵, 潜坤, 舒磊, 张孟殊, 张金虎, 陈波, 刘奎. W含量对Ti-42Al-5Mn-xW合金相转变行为的影响[J]. 金属学报, 2023, 59(10): 1401-1410.
[2] 刘仁慈, 王鹏, 曹如心, 倪明杰, 刘冬, 崔玉友, 杨锐. 700℃热暴露对 β 凝固 γ-TiAl合金表面组织及形貌的影响[J]. 金属学报, 2022, 58(8): 1003-1012.
[3] 陈玉勇, 叶园, 孙剑飞. TiAl合金板材轧制研究现状[J]. 金属学报, 2022, 58(8): 965-978.
[4] 梁晋洁, 高宁, 李玉红. 体心立方Fe中微裂纹与间隙型位错环相互作用的分子动力学模拟[J]. 金属学报, 2020, 56(9): 1286-1294.
[5] 李天瑞, 刘国怀, 于少霞, 王文娟, 张风奕, 彭全义, 王昭东. 直接包套轧制铸态Ti-46Al-8Nb合金的组织特征及热变形机制[J]. 金属学报, 2020, 56(8): 1091-1102.
[6] 刘先锋, 刘冬, 刘仁慈, 崔玉友, 杨锐. Ti-43.5Al-4Nb-1Mo-0.1B合金的包套热挤压组织与拉伸性能[J]. 金属学报, 2020, 56(7): 979-987.
[7] 王希,刘仁慈,曹如心,贾清,崔玉友,杨锐. 冷却速率对β凝固γ-TiAl合金硼化物和室温拉伸性能的影响[J]. 金属学报, 2020, 56(2): 203-211.
[8] 陈占兴,丁宏升,陈瑞润,郭景杰,傅恒志. 脉冲电流作用下TiAl合金凝固组织演变及形成机理[J]. 金属学报, 2019, 55(5): 611-618.
[9] 廖依敏, 丰敏, 陈明辉, 耿哲, 刘阳, 王福会, 朱圣龙. TiAl合金表面搪瓷基复合涂层与多弧离子镀NiCrAlY涂层的抗热腐蚀行为对比研究[J]. 金属学报, 2019, 55(2): 229-237.
[10] 金浩, 贾清, 刘荣华, 线全刚, 崔玉友, 徐东生, 杨锐. 籽晶制备及Ti-47Al合金PST晶体取向控制[J]. 金属学报, 2019, 55(12): 1519-1526.
[11] 潘宇, 路新, 刘程程, 孙健卓, 佟健博, 徐伟, 曲选辉. Sn对TiAl基合金烧结致密化与力学性能的影响[J]. 金属学报, 2018, 54(1): 93-99.
[12] 李天瑞, 刘国怀, 徐莽, 牛红志, 付天亮, 王昭东, 王国栋. Ti-43Al-4Nb-1.5Mo合金包套锻造与热处理过程的微观组织及高温拉伸性能[J]. 金属学报, 2017, 53(9): 1055-1064.
[13] 陈占兴,丁宏升,刘石球,陈瑞润,郭景杰,傅恒志. 直流电流对Ti-48Al-2Cr-2Nb合金组织和性能的影响[J]. 金属学报, 2017, 53(5): 583-591.
[14] 王晋, 张跃飞, 马晋遥, 李吉学, 张泽. Inconel 740H合金原位高温拉伸微裂纹萌生扩展研究[J]. 金属学报, 2017, 53(12): 1627-1635.
[15] 王刚,徐磊,崔玉友,杨锐. TiAl预合金粉末热等静压致密化机理及热处理对微观组织的影响*[J]. 金属学报, 2016, 52(9): 1079-1088.