Please wait a minute...
金属学报  2014, Vol. 50 Issue (11): 1384-1392    DOI: 10.11900/0412.1961.2014.00245
  本期目录 | 过刊浏览 |
晶粒细化对K417G高温合金蠕变性能的影响
都贝宁, 杨金侠, 崔传勇(), 孙晓峰
中国科学院金属研究所, 沈阳 110016
EFFECTS OF GRAIN REFINEMENT ON CREEP PROPERTIES OF K417G SUPERALLOY
DU Beining, YANG Jinxia, CUI Chuanyong(), SUN Xiaofeng
Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
引用本文:

都贝宁, 杨金侠, 崔传勇, 孙晓峰. 晶粒细化对K417G高温合金蠕变性能的影响[J]. 金属学报, 2014, 50(11): 1384-1392.
Beining DU, Jinxia YANG, Chuanyong CUI, Xiaofeng SUN. EFFECTS OF GRAIN REFINEMENT ON CREEP PROPERTIES OF K417G SUPERALLOY[J]. Acta Metall Sin, 2014, 50(11): 1384-1392.

全文: PDF(10873 KB)   HTML
摘要: 

研究了晶粒细化对K417G高温合金在760 ℃/645 MPa, 900 ℃/315 MPa和950 ℃/235 MPa下的蠕变性能的影响. 结果表明, 晶粒细化对合金蠕变性能的影响与温度和施加应力有关. 在760 ℃/645 MPa下合金的蠕变性能随晶粒细化而提高, 变形以晶内变形为主; 900 ℃/315 MPa下的蠕变性能随晶粒细化先升高后降低, 变形为晶内变形和晶界滑移竞争作用; 950 ℃/235 MPa下的蠕变性能随晶粒细化而降低, 变形以晶界滑移为主. 760 ℃/645 MPa下, 位错切过g' 相, 基体通道中没有位错网产生; 900 ℃/315 MPa和950 ℃/235 MPa下位错通过Orowan机制绕过g' 相, 基体通道中产生位错网, 并且M23C6在晶内析出.

关键词 高温合金晶粒尺寸蠕变性能    
Abstract

Grain size is one of the most important parameters which affect the mechanical properties of cast polycrystalline superalloys. To study the effect of grain refinement on the creep behaviors of K417G superalloy, the creep behaviors of K417G superalloy with four grain sizes were investigated at 760 ℃/645 MPa, 900 ℃/315 MPa and 950 ℃/235 MPa. The longitudinal section of the fracture surface, crack propagation path, dislocation structure and plastic deformation distribution in the vicinity of the cracks were investigated by using SEM, TEM and EBSD techniques, thus the deformation mechanism and effect of grain refinement on the creep properties of K417G superalloy were determined under different creep conditions. The results showed that the effects of grain refinement on the creep property of the alloy varied with the temperatures and stress. At 760 ℃/645 MPa, grain refinement improved the creep life and reduced the steady-state deformation rate of the alloy. The creep deformation was dominated by intragranular deformation. At 900 ℃/315 MPa, as grain size decreased, the creep life increased firstly and then decreased, while the steady-state deformation rate decreased firstly and then increased. The creep deformation showed a competitive effect of intragranular deformation and grain boundary sliding. At 950 ℃/235 MPa, the creep life decreased and the steady-state deformation rate increased with the decrease of the grain size. Grain boundary sliding was the main deformation mode. At the same time, grain refinement could cause a refinement of the dendrite and carbide of the alloy, which would also affect the creep behavior of the alloy to a small extent. The TEM observation showed that at 760 ℃/645 MPa, the dislocations interacted with g' particles through shearing mechanism and no dislocation network was found in the matrix. While at 900 ℃/315 MPa and 950 ℃/235 MPa, the dislocations crossed the g' particles through Orowan bypass mechanism, dislocation network formed in the matrix, and M23C6 precipitated in the interior of the grains, which had a orientation relationship between the M23C6 precipitates and matrix .

Key wordssuperalloy    grain size    creep property
收稿日期: 2014-07-02     
ZTFLH:  TG113.25  
基金资助:*国家自然科学基金项目51171179, 51128101, 51271171和 11332010, 国家重点基础研究发展计划项目2010CB631206及中国科学院百人计划项目资助
作者简介: null

都贝宁, 女, 1989年生, 博士生

Specimen Grain size / mm Carbide / μm y' phase / nm
A 2.500 4.4 750
B 1.700 4.4 670
C 0.430 3.7 650
D 0.075 3.3 580
表1  K417G合金的平均晶粒尺寸及碳化物和y' 相的平均尺寸
图1  K417G合金试棒晶粒分布与微观组织形貌
Specimen 760 ℃/645 MPa 900 ℃/315 MPa 950 ℃/235 MPa
A 60.7 126.4 90.2
B 79.0 166.2 76.2
C 87.5 113.9 70.0
D 105.4 105.5 54.7
表2  A~D样品在不同条件下的蠕变寿命
图2  A~D样品在3种不同实验条件下的蠕变曲线
Specimen 760 ℃/645 MPa 900 ℃/315 MPa 950 ℃/235 MPa
A 0.00406 0.00660 0.00692
B 0.00376 0.00440 0.00762
C 0.00290 0.00639 0.01222
D 0.00350 0.00746 0.01465
表3  4种晶粒尺寸的K417G合金在不同条件下的稳态变形速率K值
图3  蠕变实验后K417合金断口纵截面微观组织以及裂纹扩展路径
图4  样品D断口附近的EBSD面扫描形貌
图5  不同条件后K417G合金的位错组态及微观组织的TEM像
图6  晶内变形和晶界滑移示意图
[1] Yang Y H, Xie Y J, Wang M S, Ye W. Mater Des, 2013; 51: 141
[2] Xu Y, Guo S R. Acta Metall Sin, 1999; 35: 1249
[2] (徐 岩, 郭守仁. 金属学报, 1999; 35: 1249)
[3] Zheng L. J Aeronaut Mater, 2006; 26(3): 7
[3] (郑 亮. 航空材料学报, 2006; 26(3): 7)
[4] Andersson J. Int J Fatigue, 2005; 27: 847
[5] Ho H, Risbet M, Feaugas X, Moulin G. Scr Mater, 2011; 65: 998
[6] Kobayashi K, Yamaguchi K, Hayakawa M, Kimura M. Mater Lett, 2005; 59: 383
[7] Torster F, Baumeister G, Albrecht J, Lütjering G, Helm D, Daeubler M A. Mater Sci Eng, 1997; A234: 189
[8] Wei C N, Bor H Y, Ma C Y, Lee T S. Macromol Chem Phys, 2003; 80: 89
[9] Xiong Y H, Liu W, Yang A M, Zhang R, Liu L. Acta Metall Sin, 1999; 35: 689
[9] (熊玉华, 柳 伟, 杨爱民, 张 蓉, 刘 林. 金属学报, 1999; 35: 689)
[10] Yang A M. PhD Dissertation, Northwestern Polytechnical University, Xi'an, 2002
[10] (杨爱民. 西北工业大学博士学位论文, 西安, 2002)
[11] Soula A, Renollet Y, Boivin D, Pouchou J L, Locq D, Caron P. Mater Sci Eng, 2009; A510: 301
[12] Yuan Y, Gu Y F, Cui C Y, Osada T, Tetsui T, Yokokawa T. Mater Sci Eng, 2011; A528: 5106
[13] Thibault K, Locq D, Caron P, Boivin D, Renollet Y, Bréchet Y. Mater Sci Eng, 2013; A588: 14
[14] Shingledecker J P, Evans N D, Pharr G M. Mater Sci Eng, 2013; A578: 277
[15] Morrison D J, Moosbrugger J C. Int J Fatigue, 1997; 19: 51
[16] Qiao Y, Chakravarthula S S. Int J Fatigue, 2005; 27: 1251
[17] Larson J M, Floreen S. Metall Trans, 1977; 8A: 51
[18] Quested P N, Osgerby S. Mater Sci Technol, 1986; 2: 461
[19] Kuhn F, Zeismann F, Brueckner-Foit A. Int J Fatigue, 2014; 65: 86
[20] Miao J, Pollock T M, Wayne Jones J. Acta Mater, 2009; 57: 5964
[21] Miao J, Pollock T M, Wayne Jones J. Acta Mater, 2012; 60: 2840
[22] Brewer L N, Field D P, Merriman C C. Electron Backscatter Diffraction in Materials Science. New York: Springer, 2009: 18
[23] Wang D, Zhang J, Lou L H. Mater Charact, 2009; 60: 1517
[24] Liu L R, Jin T, Zhao N R, Sun X F, Guan H R, Hu Z Q. Mater Sci Eng, 2003; A361: 191
[25] Guo Y, Wang B H, Hou S F. Acta Metall Sin (Eng Lett), 2013; 26: 307
[26] Zhang J X, Murakumo T, Harada H, Koizumi Y. Scr Mater, 2003; 48: 287
[27] Nategh S, Sajjadi S A. Mater Sci Eng, 2003; A339: 103
[28] Zhu Y, Li Z, Huang M. Comput Mater Sci, 2013; 70: 178
[29] Tian S G, Zhou H H, Zhang J H,Yang H C, Xu Y B, Hu Z Q. Mater Sci Eng, 2000; A279: 160
[30] Hantcherli M, Pettinari-Sturmel F, Viguier B, Douin J, Coujou A. Scr Mater, 2012; 66: 143
[1] 江河, 佴启亮, 徐超, 赵晓, 姚志浩, 董建新. 镍基高温合金疲劳裂纹急速扩展敏感温度及成因[J]. 金属学报, 2023, 59(9): 1190-1200.
[2] 冯强, 路松, 李文道, 张晓瑞, 李龙飞, 邹敏, 庄晓黎. γ' 相强化钴基高温合金成分设计与蠕变机理研究进展[J]. 金属学报, 2023, 59(9): 1125-1143.
[3] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[4] 李嘉荣, 董建民, 韩梅, 刘世忠. 吹砂对DD6单晶高温合金表面完整性和高周疲劳强度的影响[J]. 金属学报, 2023, 59(9): 1201-1208.
[5] 赵鹏, 谢光, 段慧超, 张健, 杜奎. 两种高代次镍基单晶高温合金热机械疲劳中的再结晶行为[J]. 金属学报, 2023, 59(9): 1221-1229.
[6] 马德新, 赵运兴, 徐维台, 王富. 重力对高温合金定向凝固组织的影响[J]. 金属学报, 2023, 59(9): 1279-1290.
[7] 陈佳, 郭敏, 杨敏, 刘林, 张军. 新型钴基高温合金中W元素对蠕变组织和性能的影响[J]. 金属学报, 2023, 59(9): 1209-1220.
[8] 王磊, 刘梦雅, 刘杨, 宋秀, 孟凡强. 镍基高温合金表面冲击强化机制及应用研究进展[J]. 金属学报, 2023, 59(9): 1173-1189.
[9] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[10] 毕中南, 秦海龙, 刘沛, 史松宜, 谢锦丽, 张继. 高温合金锻件残余应力量化表征及控制技术研究进展[J]. 金属学报, 2023, 59(9): 1144-1158.
[11] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[12] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[13] 白佳铭, 刘建涛, 贾建, 张义文. WTa型粉末高温合金的蠕变性能及溶质原子偏聚[J]. 金属学报, 2023, 59(9): 1230-1242.
[14] 穆亚航, 张雪, 陈梓名, 孙晓峰, 梁静静, 李金国, 周亦胄. 基于热力学计算与机器学习的增材制造镍基高温合金裂纹敏感性预测模型[J]. 金属学报, 2023, 59(8): 1075-1086.
[15] 刘兴军, 魏振帮, 卢勇, 韩佳甲, 施荣沛, 王翠萍. 新型钴基与Nb-Si基高温合金扩散动力学研究进展[J]. 金属学报, 2023, 59(8): 969-985.