Please wait a minute...
金属学报  2014, Vol. 50 Issue (11): 1327-1334    DOI: 10.11900/0412.1961.2014.00237
  本期目录 | 过刊浏览 |
下贝氏体球墨铸铁在腐蚀介质中的磨粒磨损行为
孙挺, 宋仁伯(), 杨富强, 李亚萍, 吴春京
北京科技大学材料科学与工程学院, 北京 100083
ABRASIVE WEAR BEHAVIOR OF LOWER BAINITE DUCTILE IRON IN CORROSION MEDIA
SUN Ting, SONG Renbo(), YANG Fuqiang, LI Yaping, WU Chunjing
School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083
引用本文:

孙挺, 宋仁伯, 杨富强, 李亚萍, 吴春京. 下贝氏体球墨铸铁在腐蚀介质中的磨粒磨损行为[J]. 金属学报, 2014, 50(11): 1327-1334.
Ting SUN, Renbo SONG, Fuqiang YANG, Yaping LI, Chunjing WU. ABRASIVE WEAR BEHAVIOR OF LOWER BAINITE DUCTILE IRON IN CORROSION MEDIA[J]. Acta Metall Sin, 2014, 50(11): 1327-1334.

全文: PDF(6054 KB)   HTML
摘要: 

通过腐蚀磨损实验研究了下贝氏体球墨铸铁材料的腐蚀磨粒磨损行为, 分析了影响腐蚀磨损失重率的主要因素. 采用SEM和TEM对磨损表面特性进行了分析, 根据磨损表层纵剖面的显微硬度研究了材料表层在腐蚀磨损过程中的形变硬化效应, 结合下贝氏体球墨铸铁的电化学行为研究了载荷对耐腐蚀性能的影响. 结果表明, 下贝氏体球墨铸铁的腐蚀磨损机理为化学腐蚀失重和犁沟式磨粒磨损. 载荷的提高对表面粗糙度、材料表面与磨粒之间的摩擦力以及磨粒压入材料表面的深度有显著的影响, 从而导致磨粒磨损失重率显著上升. 较高的载荷作用下, 材料表面出现分层组织和条带状石墨, 形成局部微型原电池, 促使腐蚀速率提高, 同时分层组织的疲劳断裂也将促使失重率进一步提升. 载荷的增加使得基体中残留奥氏体内部出现大量位错的缠结, 促进材料表面硬化, 在一定程度上提高了材料的耐磨性能. 当载荷从10 N增至200 N时, 腐蚀磨损失重率从0.16 g/(cm2·h)增至0.42 g/(cm2·h). 当粗糙度Ra由0.12 μm增大到5.20 μm时, 腐蚀电流密度从0.56 mA/cm2上升至5.62 mA/cm2. 下贝氏体球墨铸铁的腐蚀磨损失重曲线可分为3个阶段, 分别为磨损初期的点接触加速磨损阶段、磨损中期的面接触过渡磨损阶段、磨损后期的疲劳磨损阶段.

关键词 下贝氏体球墨铸铁腐蚀磨粒磨损电化学行为电偶腐蚀失重率    
Abstract

The corrosion-abrasive wear behavior of lower bainite ductile iron was investigated by corrosion-abrasive wear tests. The main factors of mass loss rate were analyzed. SEM and TEM were used to observe the worn surfaces. The strain-hardening effects beneath the contact surfaces were analyzed by microhardness profiles. The influence of load to corrosion resistance was researched by polarization curves. The results show that the main corrosion wear mechanism was corrosion mass loss and furrow wear. The roughness of worn surface, friction between sample and abrasive, depth of furrow all increased with the test load, which increased the corrosion-abrasive wear rate sharply. Meanwhile, the corrosion micro-cell formed along with the appearance of graphite ribbon and delamination at a higher load, which enhanced the corrosion rate rapidly, and the fracture of delamination resulting from plastic deformation fatigue was another critical factor of the increased mass loss. With the increase of test load, dislocation multiplication and pile-up took place in the retained austenite, which improved the wear resistance of material to some extent. However, the improvement was limited. The average mass loss rate was still increased from 0.16 g/(cm2·h) to 0.42 g/(cm2·h) with the increase of test load; the corrosion current density (icorr) was enhanced from 0.56 mA/cm2 to 5.62 mA/cm2 along with the increase of roughness. In addition, the mass loss curves of lower bainite ductile iron were divided into three stages: point contact wear (initial stage), surface contact wear (transition stage) and fatigue wear (stability stage).

Key wordslower bainite ductile iron    corrosion-abrasive wear    electrochemical behavior    galvanic corrosion    mass loss rate
收稿日期: 2014-06-26     
ZTFLH:  TG143.1  
作者简介: null

孙 挺, 男, 1986年生, 博士生

图1  下贝氏体球墨铸铁的显微组织
图2  腐蚀磨粒磨损试验机示意图
图3  不同载荷下腐蚀磨损1 h后下贝氏体球墨铸铁的表面形貌
图4  不同载荷下腐蚀磨损1 h后下贝氏体球墨铸铁的纵截面形貌
图5  下贝氏体球墨铸铁腐蚀磨损表层显微硬度变化趋势和载荷对表层显微硬度特征的影响
图6  下贝氏体球墨铸铁的腐蚀磨损累积失重曲线和腐蚀磨损失重率变化
图7  不同表面粗糙度的下贝氏体球墨铸铁的极化曲线
Ra / μm Ecorr / V icorr / (mA·cm-2)
0.12 -0.528 0.56
0.28 -0.529 0.96
1.60 -0.527 1.78
5.20 -0.525 5.62
表1  粗糙度不同的下贝氏体球墨铸铁的腐蚀电位和腐蚀电流密度
图8  下贝氏体球墨铸铁腐蚀电流密度-粗糙度拟合直线
图9  高位错密度的奥氏体及其周围的低位错密度的下贝氏体形貌
图10  分层组织与条带状石墨电偶腐蚀原理
图11  下贝氏体腐蚀磨损表面的粗糙度
[1] Labrecque C, Gagné M. Can Metall Quart, 1998; 37: 343
[2] Pal S, Daniel W J T, Farjoo M. Int J Fatigue, 2013; 52: 144
[3] Laino S, Sikora J A, Dommarco R C. Wear, 2008; 265: 1
[4] Meena A, El Mansori M. Wear, 2011; 271: 2412
[5] Reed P A S, Thomson R C, James J S, Putman D C, Lee K K, Gunn S R. Mater Sci Eng, 2003; A346: 273
[6] Chaengkham P, Srichandr P. J Mater Process Technol, 2011; 211: 1372
[7] Bakhtiari R, Ekrami A. Mater Sci Eng, 2009; A525: 159
[8] Abbaszadeh K, Saghafian H, Kheirandish S. J Mater Sci Technol, 2012; 28: 336
[9] Kutsov A, Taran Y, Uzlov K, Krimmel A, Evsyukov M. Mater Sci Eng, 1999; A273-275: 480
[10] Abedi H R, Fareghi A, Saghafian H, Kheirandish S H. Wear, 2010; 268: 622
[11] Slatter T, Lewis R, Jones A H. Wear, 2011; 271: 1481
[12] Zhou Y, Lu Z, Zhan M. Mater Des, 2007; 28: 260
[13] Efremenko V G, Shimizu K, Noguchi T, Efremenko A V, Chabak Y G. Wear, 2013; 305: 155
[14] Lv Z L, Deng Y S, Rao Q C. Mater Mech Eng, 2011; 25(5): 32
[14] (吕振林, 邓月声, 饶启昌. 机械工程材料, 2011; 25(5): 32)
[15] Nie X, Meletis E I, Jiang J C, Leyland A, Yerokhin A L, Matthews A. Surf Coat Technol, 2002; 149: 245
[16] Cheng X, Hu S, Song W, Xiong X S. Appl Surf Sci, 2013; 286: 334
[17] Ji Y, Zhao W, Zhou M, Ma H R, Zeng P. Constr Build Mater, 2013; 47: 104
[18] Mansfeld F. Corros Sci, 2005; 47: 3178
[19] Dai P Q, He Z R, Mao Z Y. J Iron Steel Res, 2004; 13(6): 47
[19] (戴品强, 何则荣, 毛志远. 钢铁研究学报, 2004; 13(6): 47)
[20] Stokes B, Gao N, Reed P A S. Mater Sci Eng, 2007; A445-446: 374
[21] Wu W Q. J Iron Steel Res, 2004; 16(5): 56
[21] (吴维青. 钢铁研究学报, 2004; 16(5): 56)
[22] Cavallini M, Di Bartolomeo O, Iacoviello F. Eng Fract Mech, 2008; 75: 694
[23] Abareshi M, Emadoddin E. Mater Des, 2011; 32: 5099
[24] Wang Y, Zhang K, Guo Z, Chen N L, Rong Y H. Mater Sci Eng, 2012; A552: 288
[25] Zhang A F, Xing J D, Gao Y M, Su J Y. Acta Metall Sin, 2000; 36: 765
[25] (张安峰, 邢建东, 高义民, 苏俊义. 金属学报, 2000; 36: 765)
[26] Zhang P, Zhang F C, Yan Z G. Wear, 2011; 271: 697
[1] 程伟丽, 谷雄杰, 成世明, 陈宇航, 余晖, 王利飞, 王红霞, 李航. 镁空气电池阳极用挤压态Mg-2Bi-0.5Ca-0.5In合金的放电性能和电化学行为[J]. 金属学报, 2021, 57(5): 623-631.
[2] 李亚东,李强,唐晓,李焰. X80管线钢焊接接头的模拟重构及电偶腐蚀行为表征[J]. 金属学报, 2019, 55(6): 801-810.
[3] 马荣耀, 穆鑫, 刘博, 王长罡, 魏欣, 赵林, 董俊华, 柯伟. 静水压力对超纯Al/超纯Fe电偶中超纯Al腐蚀行为的影响[J]. 金属学报, 2019, 55(12): 1593-1605.
[4] 刘金辉, 宋影伟, 单大勇, 韩恩厚. 铸态和锻造态Mg-5Y-7Gd-1Nd-0.5Zr合金腐蚀行为对比研究[J]. 金属学报, 2018, 54(8): 1141-1149.
[5] 苑洪钟,刘智勇,李晓刚,杜翠薇. 外加电位对X90钢及其焊缝在近中性土壤模拟溶液中应力腐蚀行为的影响[J]. 金属学报, 2017, 53(7): 797-807.
[6] 洪川,高运明,杨创煌,童志博. 1673 K下SiO2-CaO-MgO-Al2O3熔渣中 Ni2+的电化学行为*[J]. 金属学报, 2015, 51(8): 1001-1009.
[7] 颜永得, 杨晓南, 张密林, 李星, 王丽, 薛云, 张志俭. 氯化物熔盐体系共电沉积法制备Al-Li-Gd合金的研究*[J]. 金属学报, 2014, 50(8): 989-994.
[8] 周合兵 梁曼 吕东生 许梦清 李伟善. 电镀Zn-In合金在碱性溶液中的电化学行为[J]. 金属学报, 2011, 47(8): 1055-1060.
[9] 张安峰; 邢建东; 鲍崇高; 贾焕如 . 动态与静态纯腐蚀对定量研究材料冲刷腐蚀交互作用的影响[J]. 金属学报, 2002, 38(5): 521-524 .
[10] 刘屏;许昌淦. 钛合金中相的电化学行为[J]. 金属学报, 1989, 25(4): 115-119.