Please wait a minute...
金属学报  2014, Vol. 50 Issue (9): 1087-1094    DOI: 10.11900/0412.1961.2014.00187
  本期目录 | 过刊浏览 |
304不锈钢毛细管/Zr53.5Cu26.5Ni5Al12Ag3块体非晶合金复合材料的制备与性能研究
马广财1, 付华萌1, 王峥2, 徐庆亮3, 张海峰1()
1 中国科学院金属研究所沈阳材料科学国家(联合)实验室, 沈阳110016
2 沈阳科金新材料有限公司, 沈阳110016
3 中国石油大庆石化分公司腈纶厂, 大庆 163714
STUDY ON FABRICATION AND PROPERTIES OF 304 STAINLESS STEEL CAPILLARY TUBES/Zr53.5Cu26.5Ni5Al12Ag3 BULK METALLIC GLASS COMPOSITES
MA Guangcai1, FU Huameng1, WANG Zheng2, XU Qingliang3, ZHANG Haifeng1()
1 Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
2 Shenyang Kejin Advanced Material Company Limited, Shenyang 110016
3 Petrochina Daqing Petrochemical Company Acrylic Fiber Plant, Daqing 163714
引用本文:

马广财, 付华萌, 王峥, 徐庆亮, 张海峰. 304不锈钢毛细管/Zr53.5Cu26.5Ni5Al12Ag3块体非晶合金复合材料的制备与性能研究[J]. 金属学报, 2014, 50(9): 1087-1094.
Guangcai MA, Huameng FU, Zheng WANG, Qingliang XU, Haifeng ZHANG. STUDY ON FABRICATION AND PROPERTIES OF 304 STAINLESS STEEL CAPILLARY TUBES/Zr53.5Cu26.5Ni5Al12Ag3 BULK METALLIC GLASS COMPOSITES[J]. Acta Metall Sin, 2014, 50(9): 1087-1094.

全文: PDF(9961 KB)   HTML
  
摘要: 

采用渗流法成功制备出不同体积分数的304不锈钢毛细管/Zr53.5Cu26.5Ni5Al12Ag3块状非晶复合材料, 分析了该复合材料的性能和变形行为. 利用万能力学试验机进行性能测试, 利用白光干涉轮廓测量仪、 X射线三维成像和SEM观察样品表面及断口形貌. 结果表明: 复合材料的塑性得到显著改善, 其中毛细管体积分数为34%时, 复合材料的压缩应变可达约20%, 同时伴有明显的加工硬化现象, 其加工硬化量与毛细管含量有关. 复合材料以近45°的剪切方式断裂, 表面较为平坦, 毛细管撕裂与界面脱粘形成裂纹扩展路径. 剪切带的数量随毛细管体积分数增加而增加, 毛细管包裹的非晶基体发生剪切变形滞后于毛细管外部的基体.

关键词 Zr53.5Cu26.5Ni5Al12Ag3非晶合金304不锈钢毛细管剪切带加工硬化    
Abstract

Different volume fractions of 304 stainless steel capillary tubes/Zr53.5Cu26.5Ni5Al12Ag3 metallic glass composites were prepared using infiltration method. Their properties and deformation behaviors were investigated systematically. The mechanical properties were performed on materials test machine. Surfaces and fracture morphologies were examined using white light interferometer, X-ray 3D imaging and SEM techniques. The results show that the ductility of composites was improved. The compressive strain of composite reaches 20% when the volume fraction is 34%. The deformation involves obvious work hardening. The amount of work hardening depends on the content of tubes. The composite fails in the shear mode along 45°. The split and debonding of tubes and interfaces act as the propagation way of crack. The amount of shear bands increase as the volume fraction increases. The shear deformation of amorphous in tubes falls behind that out tubes.

Key wordsZr53.5Cu26.5Ni5Al12Ag3 bulk metallic glass    304 stainless steel capillary tube    shear band    work hardening
    
ZTFLH:  TG139.8  
基金资助:*国家重点基础研究发展计划项目2011CB606301和中国科学院“百人计划”研究项目资助
作者简介: null

马广财, 女, 1980 年生, 工程师, 博士生

图1  304不锈钢毛细管/ Zr53.5Cu26.5Ni5Al12Ag3非晶复合材料的SEM像
图2  室温下304不锈钢毛细管/Zr53.5Cu26.5Ni5Al12Ag3非晶复合材料准静态压缩应力-应变曲线
Material Vf / % Rmc / MPa Rpc0.2 / MPa ec / %
BMG - 1911 - -
BMG/steel 34 1831±18 696±7 20±2
BMG/steel 30 1619±16 723±7 15±2
BMG/steel 24 1582±25 996±9 11±3
BMG/steel 18 1831±18 1037±10 10±3
表1  非晶合金、304不锈钢毛细管/ Zr53.5Cu26.5Ni5Al12Ag3非晶复合材料的力学性能
图3  304不锈钢毛细管/ Zr53.5Cu26.5Ni5Al12Ag3非晶复合材料变形后的SEM像
图4  室温下经历5%压缩变形后不同体积分数304不锈钢毛细管/Zr53.5Cu26.5Ni5Al12Ag3非晶复合材料侧面的SEM像
图5  304不锈钢毛细管/ Zr53.5Cu26.5Ni5Al12Ag3非晶复合材料不同变形阶段下侧面形貌及其示意图
图6  毛细管体积分数为34%的304不锈钢毛细管/ Zr53.5Cu26.5Ni5Al12Ag3非晶复合材料的室温压缩断口形貌
[1] Ashby M F, Greer A L. Scr Mater, 2006; 54: 3216
[2] Gilbert C T, Ritchie R O, Johnson W L. Appl Phys Lett, 1997; 71: 476
[3] Suzuki K, Kataoka N, Inoue A. Mater Trans JIM, 1990; 31: 743
[4] Inoue A, Zhang T, Masumoto T. Mater Trans JIM, 1995; 36: 391
[5] Deng S T, Zhang H F, Wang A M, Li H, Ding B Z, Hu Z Q. J Alloys Compd, 2008; 406: 182
[6] Inoue A, Takeuchi A. Acta Mater, 2011; 59: 2243
[7] Lottler J. Intermetallics, 2003; 11: 529
[8] Szuecs F, Kim C P, Johnson W L. Acta Mater, 2001; 49: 1507
[9] Zhang B, Zhao D Q, Pan M X. Phys Rev Lett, 2005; 94: 205502
[10] Johnson W L. Appl Phys Lett, 1999; 24: 42
[11] Zhu Z W. PhD Dissertation, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 2009
[11] (朱正旺. 中国科学院金属研究所博士学位论文, 沈阳, 2009)
[12] Zhu Z W, Zhang H F, Hu Z Q, Zhang W, Inoue A. Scr Mater, 2010; 62: 278
[13] Kuhn U, Eckert J, Mattern N, Schultz L. Appl Phys Lett, 2002; 80: 2478
[14] Fan C, Ott R T, Hufnagel T C. Appl Phys Lett, 2002; 81: 1020
[15] Bian Z, Kato H, Qin C, Zhang W, Inoue A. Acta Mater, 2005; 53: 2037
[16] Dong W B, Zhang H F, Sun W S, Wang A M, Li H, Hu Z Q. J Mater Res, 2006; 21: 1490
[17] Hui X, Dong W, Chen G L. Acta Mater, 2007; 55: 907
[18] Hofmann D C, Suh J Y, Wiest A. Nature, 2008; 451: 1085
[19] Dandliker R B. PhD Dissertation, California Institute of Technology, Pasadena, 1998
[20] Fan C, Li L, Kelskes J, Liu C T. Phys Rev Lett, 2006; 96: 145506
[21] Kim C P. PhD Dissertation, California Institute of Technology, Pasadena, 2001
[22] Conner R D. PhD Dissertation, California Institute of Technology, Pasadena, 1998
[23] Lee S Y. PhD Dissertation, California Institute of Technology, Pasadena, 2007
[24] Mathaudhu S N. PhD Dissertation, Texas A&M University, College station, 2006
[25] Wang G. PhD Dissertation, The University of Tennessee, Knoxiville, 2006
[26] Hofmann D C. PhD Dissertation, California Institute of Technology, Pasadena, 2009
[27] Chen L Y, Fu Z D, Zhang G Q, Hao X P, Jiang Q K, Wang X D, Cao Q P. Phys Rev Lett, 2008; 100: 075501
[28] Deng S T, Diao H, Chen Y L. Scr Mater, 2011; 64: 85
[29] Deng S T. PhD Dissertation, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 2010
[29] (邓胜涛. 中国科学院金属研究所博士学位论文, 沈阳, 2010)
[30] Sun Y, PhD Dissertation, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 2010
[30] (孙 羽. 中国科学院金属研究所博士学位论文, 沈阳, 2010)
[31] Zheng Q, Cheng S, Strader J H, Ma E, Xu J. Scr Mater, 2007; 56: 161
[32] Park E S, Lee J Y, Kim D H, Gebert A, Schultz L. J Appl Phys, 2008; 104: 023520
[33] Lee C J, Huang J C, Nieh T G. Appl Phys Lett, 2007; 91: 161963
[1] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[2] 任平, 陈兴品, 王存宇, 俞峰, 曹文全. 预变形和双级时效对Fe-30Mn-11Al-1.2C奥氏体低密度钢显微组织和力学性能的影响[J]. 金属学报, 2022, 58(6): 771-780.
[3] 沈国慧, 胡斌, 杨占兵, 罗海文. 回火温度对含 δ 铁素体高铝中锰钢力学性能和显微组织的影响[J]. 金属学报, 2022, 58(2): 165-174.
[4] 陈伟, 章环, 牟娟, 朱正旺, 张海峰, 王沿东. 显微组织和应变速率对TC4合金动态力学性能和绝热剪切带的影响[J]. 金属学报, 2022, 58(10): 1271-1280.
[5] 蒋敏强, 高洋. 金属玻璃的结构年轻化及其对力学行为的影响[J]. 金属学报, 2021, 57(4): 425-438.
[6] 屈瑞涛, 王晓地, 吴少杰, 张哲峰. 金属玻璃的剪切带变形与断裂机制研究进展[J]. 金属学报, 2021, 57(4): 453-472.
[7] 李索, 陈维奇, 胡龙, 邓德安. 加工硬化和退火软化效应对316不锈钢厚壁管-管对接接头残余应力计算精度的影响[J]. 金属学报, 2021, 57(12): 1653-1666.
[8] 王世宏,李健,葛昕,柴锋,罗小兵,杨才福,苏航. γ/ε双相Fe-19Mn合金在拉伸变形过程中的组织演变和加工硬化行为[J]. 金属学报, 2020, 56(3): 311-320.
[9] 祝佳林,刘施峰,曹宇,柳亚辉,邓超,刘庆. 交叉轧制周期对高纯Ta板变形及再结晶梯度的影响[J]. 金属学报, 2019, 55(8): 1019-1033.
[10] 金淼, 李文权, 郝硕, 梅瑞雪, 李娜, 陈雷. 固溶温度对Mn-N型双相不锈钢拉伸变形行为的影响[J]. 金属学报, 2019, 55(4): 436-444.
[11] 张海峰, 闫海乐, 贾楠, 金剑锋, 赵骧. Cu/Ti纳米层状复合体塑性变形机制的分子动力学模拟研究[J]. 金属学报, 2018, 54(9): 1333-1342.
[12] 侯陇刚, 刘明荔, 王新东, 庄林忠, 张济山. 高强7050铝合金超低温大变形加工与组织、性能调控[J]. 金属学报, 2017, 53(9): 1075-1090.
[13] 邢辉, 郭明星, 汪小锋, 张艳, 张济山, 庄林忠. 不同浓度富Fe相粒子对Al-Mg-Si-Cu系合金弯边性能的影响*[J]. 金属学报, 2016, 52(3): 271-280.
[14] 王晓钢,姜潮,韩旭. Ni单晶体塑性应变的非均匀性与加工硬化*[J]. 金属学报, 2015, 51(12): 1457-1464.
[15] 张盛华,王培,李殿中,李依依. ZG06Cr13Ni4Mo马氏体不锈钢中TRIP效应的同步辐射高能X射线原位研究*[J]. 金属学报, 2015, 51(11): 1306-1314.