Please wait a minute...
金属学报  2014, Vol. 50 Issue (12): 1513-1519    DOI: 10.11900/0412.1961.2014.00185
  本期目录 | 过刊浏览 |
激光原位制备硼化钛与镍钛合金增强钛基复合涂层
林英华, 雷永平(), 符寒光, 林健
北京工业大学材料科学与工程学院, 北京 100124
LASER IN SITU SYNTHESIZED TITANIUM DIBORIDE AND NITINOL REINFORCE TITANIUM MATRIX COMPOSITE COATINGS
LIN Yinghua, LEI Yongping(), FU Hanguang, LIN Jian
College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124
引用本文:

林英华, 雷永平, 符寒光, 林健. 激光原位制备硼化钛与镍钛合金增强钛基复合涂层[J]. 金属学报, 2014, 50(12): 1513-1519.
Yinghua LIN, Yongping LEI, Hanguang FU, Jian LIN. LASER IN SITU SYNTHESIZED TITANIUM DIBORIDE AND NITINOL REINFORCE TITANIUM MATRIX COMPOSITE COATINGS[J]. Acta Metall Sin, 2014, 50(12): 1513-1519.

全文: PDF(6322 KB)   HTML
摘要: 

以不同配比的Ni粉末和TiB2粉末混合物为预置层, 利用激光原位技术在钛合金表面制备了bcc结构的NiTi合金、TiB短纤维与TiB2颗粒增强钛基复合涂层. 运用XRD, SEM与EPMA等实验手段, 对合成的钛基复合涂层进行测试分析. 结果表明, 随着激光功率密度与Ni粉末添加量的增加, 涂层表面成型质量得到改善; 然而随着Ni添加量的提高, 涂层中出现了NiTi2新相, 且TiB短纤维变得粗大; 通过热力学计算可知, 反应驱动力大小顺序为Ni3Ti>NiTi2>NiTi>TiB, 并结合涂层中相种类及含量的变化规律, 探讨了不同元素反应间的竞争机制.

关键词 激光熔覆TC4钛合金TiBNiTi    
Abstract

Laser cladding is a technique in which a laser beam is used as the heating source to melt the alloy powder to be clad on the surface of titanium alloy substrate. Currently, the surface of many titanium alloy components needs repairing after a period of service in order to extend their service life. TiB and TiB2 are considered as the excellent ceramic reinforced particle for their compatible physical and thermodynamic properties, high hardness and Young's modulus of elasticity. The intermetallic compound NiTi, well-known for its shape memory effect and pseudo-elasticity, is one of the rarely few intermetallic compounds having excellent combination of high strength, ductility and toughness as well as excellent wear resistance and fabrication processing properties. An in-situ TiB/TiB2 structured ceramic materials as the reinforcing phase and NiTi intermetallic phase as the matrix would be expected to have an outstanding combination of high hardness and toughness. NiTi alloy, TiB short fiber and TiB2 particulate reinforced titanium matrix composite coatings were prepared by laser in situ synthesis on titanium surface with different ratios of Ni powder and TiB2 powder mixture as a preset level. Synthesis of titanium matrix composite coating was analyzed by XRD, SEM and EPMA. The results show that the surface quality of the coating increases with increasing laser power density and the amount of Ni powder. Whereas, the new phase of NiTi2 and coarse diameter of TiB short fiber are found in the coating when the amount of Ni added is improved. The reaction mechanism is discussed based on thermodynamic calculations. The reaction driving force size to Ni3Ti>NiTi2>NiTi>TiB order arrangement are found by thermodynamic calculation, and reaction mechanism of competition between the different elements is discussed based on phase variation of the type and content in the coating.

Key wordslaser cladding    TC4 titanium alloy    TiB    NiTi
    
ZTFLH:  TN249  
基金资助:*国家自然科学基金资助项目51275006
作者简介: null

林英华, 男, 1985年生, 博士生

图1  不同成分配比与不同激光功率下复合涂层的表面宏观形貌
图2  激光功率为2.36 kW, 扫描速度6 mm/s下不同成分配比所获得涂层表层的XRD谱
图3  不同成分配比下涂层截面中部的SEM像
Position Ti B Ni Al V
1 30.6~38.0 55.3~64.0 1.0~1.3 2.8~3.4 1.5~1.9
2 40.7~48.8 40.1~45.7 0.9~2.0 4.3~7.0 1.8~2.5
3 45.7~47.3 43.7~44.5 1.3~1.6 5.0~5.7 2.1~2.4
4 78.3~82.3 0 4.2~5.4 11.2~14.5 3.6~4.2
5 83.6~89.6 0 3.7~4.6 3.2~4.1 3.5~4.1
表1  图4中各位置的EPMA分析结果
图4  3种不同成分配比的涂层横截面中部显微组织的SEM像及EPMA测试位置
图5  Ni∶TiB2=0.5∶1的涂层的SEM像及EPMA面扫描结果
图6  公式(1)~(11)中Ni, Ti和TiB2之间的反应Gibbs自由能随温度的变化曲线
[1] Kaestner P, Olfe J, He J, He W, Rie K T. Surf Coat Technol, 2001; 142: 928
[2] Astar E, Kayali E S, Cimenoglu H. Surf Coat Technol, 2008; 202: 4583
[3] Fridrici V, Fouvry S, Kapsa P. Wear, 2001; 250: 642
[4] Bai L, Ding Y, Deng K, Wang N T, Gong H B, Dai Z D. Mater Rev, 2013; 27: 79
[4] (柏 林, 丁 燕, 邓 凯, 王宁涛, 龚海波, 戴振东. 材料导报, 2013; 27: 79)
[5] Shen G Q, Lei J, Liang Y M, Wang S H. J Beijing Univ Aeronaut Astronaut, 1995; 21: 5
[5] (沈桂琴, 雷 杰, 梁佑明, 王世洪. 北京航空航天大学学报, 1995; 21: 5)
[6] Wang H M, Cao F, Cai L X, Tang H B, Yu R L, Zhang L Y. Acta Mater, 2003; 51: 6319
[7] Gao F, Wang H M. Mater Charact, 2008; 59: 1349
[8] Wang Z X, He Z Y, Wang Y Q, Liu X P, Tang B. Mater Sci Forum, 2011; 687: 759
[9] Wang Z X, He Z Y, Wang Y Q, Liu X P, Tang B. Appl Surf Sci, 2011; 257: 10272
[10] Liang Y N, Li S Z, Jin Y B. Wear, 1996; 198: 236
[11] Indrani S, Gopinath K, Ranjan D, Ramamurty U. Acta Mater, 2010; 58: 6799
[12] Guo X L, Wang L Q, Wang M M, Qin J N, Zhang D, Lu W J. Acta Mater, 2012; 60: 2656
[13] Lin Y H, Chen Z Y, Li Y H, Zhu W H, Wen X D, Wang X L. Infrared Laser Eng, 2012; 41: 2694
[13] (林英华, 陈志勇, 李月华, 朱卫华, 文向东, 王新林. 红外与激光工程, 2012; 41: 2694)
[14] Hagihara K, Nakano T, Umakoshi Y. Acta Mater, 2003; 51: 2623
[15] Zhu H B, Li H, Li Z X. Surf Coat Technol, 2013; 235: 620
[16] Zhang X W, Liu H X, Jiang Y H, Wang C Q. Acta Metall Sin, 2011; 47: 1086
[16] (张晓伟, 刘洪喜, 蒋业华, 王传琦. 金属学报, 2011; 47: 1086)
[17] Gorsse S, Miracle D B. Acta Mater, 2003; 51: 2427
[18] De Graef M, Loefvander J P A, Levi C G. Acta Metall Mater, 1991; 39: 2381
[19] Kawabata K, Sato E, Kuribayashi K. Scr Mater, 2004; 50: 523
[20] Leyens C,translated by Chen Z H.Titanium and Titanium Alloy. Beijing: Chemical Industy Press, 2005: 8
[20] (Leyens C著,陈振华译. 钛与钛合金. 北京: 化学工业出版社, 2005: 8)
[21] Ye D L,Hu J H. Utility Inorganic Materials Thermodynamics Data Handbook. 2nd Ed, Beijing: Metallurgy Industry Press, 2002: 115
[21] (叶大伦,胡建华. 实用无机物热力学数据手册. 第二版, 北京: 冶金工业出版社, 2002: 115)
[22] Yang Y F, Wang H Y, Zhao R Y. J Mater Res, 2007; 22: 169
[23] Yang Z F. PhD Dissertation, Shanghai Jiao Tong University, 2007
[23] (杨志峰. 上海交通大学博士学位论文, 2007)
[24] Lv W J, Xiao L, Geng K, Qin J N, Zhang D. Mater Charact, 2008; 59: 912
[25] Panda K B, Ravi K S. Acta Mater, 2006; 54: 1641
[1] 王虎, 赵琳, 彭云, 蔡啸涛, 田志凌. 激光熔化沉积TiB2 增强TiAl基合金涂层的组织及力学性能[J]. 金属学报, 2023, 59(2): 226-236.
[2] 姜江, 郝世杰, 姜大强, 郭方敏, 任洋, 崔立山. NiTi-Nb原位复合材料的准线性超弹性变形[J]. 金属学报, 2023, 59(11): 1419-1427.
[3] 陈斐, 邱鹏程, 刘洋, 孙兵兵, 赵海生, 沈强. 原位激光定向能量沉积NiTi形状记忆合金的微观结构和力学性能[J]. 金属学报, 2023, 59(1): 180-190.
[4] 杨超, 卢海洲, 马宏伟, 蔡潍锶. 选区激光熔化NiTi形状记忆合金研究进展[J]. 金属学报, 2023, 59(1): 55-74.
[5] 孙腾腾, 王洪泽, 吴一, 汪明亮, 王浩伟. 原位自生2%TiB2 颗粒对2024Al增材制造合金组织和力学性能的影响[J]. 金属学报, 2023, 59(1): 169-179.
[6] 王浩伟, 赵德超, 汪明亮. 原位自生TiB2/Al基复合材料的腐蚀防护技术研究现状[J]. 金属学报, 2022, 58(4): 428-443.
[7] 冯凯, 郭彦兵, 冯育磊, 姚成武, 朱彦彦, 张群莉, 李铸国. 激光熔覆高强韧铁基涂层精细组织调控与性能研究[J]. 金属学报, 2022, 58(4): 513-528.
[8] 姜江, 郝世杰, 姜大强, 郭方敏, 任洋, 崔立山. NiTi-NbTi原位复合材料的Lüders带型变形和载荷转移行为[J]. 金属学报, 2021, 57(7): 921-927.
[9] 赵万新, 周正, 黄杰, 杨延格, 杜开平, 贺定勇. FeCrNiMo激光熔覆层组织与摩擦磨损行为[J]. 金属学报, 2021, 57(10): 1291-1298.
[10] 张林, 郭晓, 高建文, 邓安元, 王恩刚. 电磁搅拌对TiB2颗粒增强钢组织和力学性能的影响[J]. 金属学报, 2020, 56(9): 1239-1246.
[11] 童文辉, 张新元, 李为轩, 刘玉坤, 李岩, 国旭明. 激光工艺参数对TiC增强钴基合金激光熔覆层组织及性能的影响[J]. 金属学报, 2020, 56(9): 1265-1274.
[12] 张煜, 娄丽艳, 徐庆龙, 李岩, 李长久, 李成新. 超高速激光熔覆镍基WC涂层的显微结构与耐磨性能[J]. 金属学报, 2020, 56(11): 1530-1540.
[13] 许擎栋, 李克俭, 蔡志鹏, 吴瑶. 脉冲磁场对TC4钛合金微观结构的影响及其机理探究[J]. 金属学报, 2019, 55(4): 489-495.
[14] 王宝刚, 易红亮, 王国栋, 骆智超, 黄明欣. 原位生成铁基复合材料中TiB2的三维形貌重构[J]. 金属学报, 2019, 55(1): 133-140.
[15] 任建强, 梁淑华, 姜伊辉, 杜翔. 原位(TiB2-TiB)/Cu复合材料组织与性能研究[J]. 金属学报, 2019, 55(1): 126-132.