Please wait a minute...
金属学报  2014, Vol. 50 Issue (9): 1128-1136    DOI: 10.11900/0412.1961.2014.00142
  本期目录 | 过刊浏览 |
一种模拟和预测金属锻造过程动态再结晶的新方法
鲁世强(), 王克鲁, 李鑫, 刘诗彪
南昌航空大学航空制造工程学院, 南昌 330063
A NEW METHOD FOR SIMULATING AND PREDICT- ING DYNAMIC RECRYSTALLIZATION IN METAL FORGING
LU Shiqiang(), WANG Kelu, LI Xin, LIU Shibiao
School of Aeronautical Manufacturing Engineering, Nanchang Hangkong University, Nanchang 330063
引用本文:

鲁世强, 王克鲁, 李鑫, 刘诗彪. 一种模拟和预测金属锻造过程动态再结晶的新方法[J]. 金属学报, 2014, 50(9): 1128-1136.
Shiqiang LU, Kelu WANG, Xin LI, Shibiao LIU. A NEW METHOD FOR SIMULATING AND PREDICT- ING DYNAMIC RECRYSTALLIZATION IN METAL FORGING[J]. Acta Metall Sin, 2014, 50(9): 1128-1136.

全文: PDF(5212 KB)   HTML
摘要: 

提出了一种将功率耗散图预测的动态再结晶热力参数范围与有限元模拟相结合, 来模拟和预测金属锻造过程动态再结晶的方法. 该方法通过二次开发引入到Deform 3D有限元软件系统后, 利用该系统成功模拟和预测了TC11钛合金在工艺参数为(1020 ℃, 0.1 s-1), (1050 ℃, 0.1 s-1)和(1050 ℃, 10 s-1)时, 恒应变速率压缩过程中发生动态再结晶的区域及其变化规律, 模拟预测结果与实验结果吻合较好.

关键词 功率耗散图有限元动态再结晶模拟与预测TC11钛合金    
Abstract

The window of thermomechanical parameters where dynamic recrystallization occurs can be predicted according to the power dissipation map based on dynamic materials model, and the distribution of thermomechanical parameters in metal forging can be calculated by using finite element (FE) simulation. Thus, the zone of dynamic recrystallization and its evolution in metal forging not only can be simulated and predicted, but also the forging process parameters where dynamic recrystallization occurs can be optimized by the combination of the window of thermomechanical parameters where dynamic recrystallization occurs and finite element simulaton, which provides a new way for realizing the control of microstructure and property of forging. A method for simulating and predicting dynamic recrystallization in metal forging is proposed based on the combination of the thermomechanical parameter window of dynamic recrystallization predicted by power dissipation map and finite element simulation, and the method is already integrated into the commercial FE software Deform 3D. The zone of dynamic recrystallization and its evolution in compression of titanium alloy TC11 at process parameters (1020 ℃, 0.1 s-1), (1050 ℃, 0.1 s-1), (1050 ℃, 10 s-1) and constant strain rate are successfully simulated and predicted by using the modified FE software Deform 3D. The simulated and predicted result is in good agreement with experiment.

Key wordspower dissipation map    finite element    dynamic recrystallization    simulation and prediction    titanium alloy TC11
    
ZTFLH:  TG316  
基金资助:* 国家自然科学基金资助项目51164030
作者简介: null

鲁世强, 男, 1962年生, 教授, 博士

图1  TC11钛合金不同应变速率下的功率耗散图
图2  TC11钛合金动态再结晶的热力参数范围
图3  应变速率为0.1 s-1时不同变形温度下的流动应力曲线
图4  变形温度1050 ℃, 应变速率0.1 s-1时的加工硬化与流动应力之间的关系曲线
图5  不同工艺参数压缩时的动态再结晶行为模拟
图6  不同工艺参数压缩时标示点的温度变化规律
图7  不同工艺参数压缩时标示点的等效应变速率变化规律
图8  不同工艺参数压缩时标示点的等效应变变化规律
图9  工艺参数为( 1020 ℃, 0.1 s-1 )时压缩试样不同区域的变形微观组织
图10  工艺参数为(1050 ℃, 0.1 s-1)时压缩试样不同区域的变形微观组织
图11  工艺参数为(1050 ℃, 10 s-1)时压缩试样不同区域的变形微观组织
[1] Lee C H, Kobayashi S. J Eng Ind, 1973; 95: 865
[2] Yue C X, Zhang L W, Liao S L, Gao H J. Comp Mater Sci, 2009; 45: 462
[3] Lin Y C, Chen M S. J Mater Process Technol, 2009; 209: 4578
[4] Reza R, Siamak S. Mater Des, 2007; 28: 2366
[5] Yeom J T, Lee C S, Kim J H, Park N K. Mater Sci Eng, 2007; A449-451: 722
[6] Serajzadeh S. Int J Mach Tool Manuf, 2003; 43: 1487
[7] Wang K L, Fu M W, Lu S Q, Li X. Mater Des, 2011; 32: 1283
[8] Gegel H L. In: Cinicnnati O H, Chen C C eds., Proc Symp on Experimental Verification of Process Models, Materials Park, Ohio: ASM, 1983: 25
[9] Prasad Y V, Gegel H L, Doraivelu S M, Malas J C, Morgan J T, Lark K A, Brarker D R. Metall Trans, 1984; 15A: 1883
[10] Gegel H L. Synthesis of Atomistics and Continuum Modeling to Describe Microstructure: Computer Simulation in Materials Science. Materials Park, Ohio: ASM, 1986: 291
[11] Malas J C, Seetharaman V. JOM-J Min Met Mater Soc, 1992; 48: 8
[12] Alexander J M. Modelling of Hot Deformation of Steels. Berlin: Springer Verlag, 1989: 105
[13] Sun Y, Zeng W D, Ma X, Xu B, Liang X B, Zhang J W. Intermetallics, 2011; 19: 1014
[14] Peng W P, Li P J, Zeng P, Lei L P. Mater Sci Eng, 2008; A494: 173
[15] Luo J, Li M Q, Yu W X. Mater Sci Eng, 2009; A504: 90
[16] Wang K L, Lu S Q, Fu M W, Li X, Dong X J. Mater Sci Eng, 2010; A527: 7279
[17] Lu S Q, Li X, Wang K L, Dong X J, Li Z X, Cao C X. Chin J Mech Eng, 2007; 43(8): 77
[17] (鲁世强, 李 鑫, 王克鲁, 董显娟, 李臻熙, 曹春晓. 机械工程学报, 2007; 43(8): 77)
[18] Murty S V, Rao B N. J Mater Process Technol, 2000; 104: 103
[19] Prasad Y V, Sastry D H, Deevi S C. Intermetallics, 2000; 8: 1067
[20] Prasad Y V, Sasidhara S. Hot Working Guide: A Compendium of Processing Maps. Ohio: ASM International, The Materials Information Society, 1997: 2
[21] Lu S Q, Li X, Wang K L, Dong X J, Fu M W. Trans Nonferrous Met Soc China, 2013; 23: 353
[22] Wang K L, Lu S Q, Fu M W, Li X, Dong X J. Mater Charact, 2009; 60: 492
[23] Li X, Lu S Q, Wang K L, Zhao W G, Li Z X, Cao C X. Acta Metall Sin, 2007; 43: 1268
[23] (李 鑫, 鲁世强, 王克鲁, 赵为纲, 李臻熙, 曹春晓. 金属学报, 2007; 43: 1268)
[24] Rollett A D, Jonas J J. Acta Mater, 1996; 44: 127
[25] Prasad G V, Goerdeler M, Cottstein G. Mater Sci Eng, 2005; A400-401: 231
[26] Ouyang D L, Lu S Q, Cui X, Dong X J, Wu C, Qiu W. J Aeronaut Mater, 2010; 30(2): 17
[26] (欧阳德来, 鲁世强, 崔 霞, 董显娟, 吴 超, 邱 伟. 航空材料学报, 2010; 30(2): 17)
[1] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[2] 李福林, 付锐, 白云瑞, 孟令超, 谭海兵, 钟燕, 田伟, 杜金辉, 田志凌. 初始晶粒尺寸和强化相对GH4096高温合金热变形行为和再结晶的影响[J]. 金属学报, 2023, 59(7): 855-870.
[3] 张禄, 余志伟, 张磊成, 江荣, 宋迎东. GH4169高温合金热机械疲劳循环损伤机理及数值模拟[J]. 金属学报, 2023, 59(7): 871-883.
[4] 娄峰, 刘轲, 刘金学, 董含武, 李淑波, 杜文博. 轧制态Mg-xZn-0.5Er合金板材组织及室温成形性能[J]. 金属学报, 2023, 59(11): 1439-1447.
[5] 吴彩虹, 冯迪, 臧千昊, 范诗春, 张豪, 李胤樹. 喷射成形AlSiCuMg合金的热变形组织演变及再结晶行为[J]. 金属学报, 2022, 58(7): 932-942.
[6] 任少飞, 张健杨, 张新房, 孙明月, 徐斌, 崔传勇. 新型Ni-Co基高温合金塑性变形连接中界面组织演化及愈合机制[J]. 金属学报, 2022, 58(2): 129-140.
[7] 姜伟宁, 武晓龙, 杨平, 顾新福, 解清阁. 热轧硅钢表层动态再结晶区形成规律及剪切织构特征[J]. 金属学报, 2022, 58(12): 1545-1556.
[8] 李少杰, 金剑锋, 宋宇豪, 王明涛, 唐帅, 宗亚平, 秦高梧. “工艺-组织-性能”模拟研究Mg-Gd-Y合金混晶组织[J]. 金属学报, 2022, 58(1): 114-128.
[9] 赵宇宏, 景舰辉, 陈利文, 徐芳泓, 侯华. 装甲防护陶瓷-金属叠层复合材料界面研究进展[J]. 金属学报, 2021, 57(9): 1107-1125.
[10] 倪珂, 杨银辉, 曹建春, 王刘行, 刘泽辉, 钱昊. 18.7Cr-1.0Ni-5.8Mn-0.2NNi型双相不锈钢的大变形热压缩软化行为[J]. 金属学报, 2021, 57(2): 224-236.
[11] 李索, 陈维奇, 胡龙, 邓德安. 加工硬化和退火软化效应对316不锈钢厚壁管-管对接接头残余应力计算精度的影响[J]. 金属学报, 2021, 57(12): 1653-1666.
[12] 陈永君, 白妍, 董闯, 解志文, 燕峰, 吴迪. 基于有限元分析的准晶磨料强化不锈钢表面钝化行为[J]. 金属学报, 2020, 56(6): 909-918.
[13] 陈文雄, 胡宝佳, 贾春妮, 郑成武, 李殿中. 热变形后Ni-30%Fe模型合金中奥氏体的亚动态软化行为[J]. 金属学报, 2020, 56(6): 874-884.
[14] 张阳, 邵建波, 陈韬, 刘楚明, 陈志永. Mg-5.6Gd-0.8Zn合金多向锻造过程中的变形机制及动态再结晶[J]. 金属学报, 2020, 56(5): 723-735.
[15] 王霞, 王维, 杨光, 王超, 任宇航. 激光沉积薄壁结构热力演化的尺寸效应[J]. 金属学报, 2020, 56(5): 745-752.