Please wait a minute...
金属学报  2014, Vol. 50 Issue (11): 1357-1366    DOI: 10.11900/0412.1961.2014.00132
  本期目录 | 过刊浏览 |
高温预时效+低温再时效对Al-Mg-Si-Cu合金力学性能及晶间腐蚀敏感性的影响
李海1,3(), 毛庆忠1, 王芝秀1,2,3, 苗芬芬1, 方必军1, 宋仁国1,3, 郑子樵2
1 常州大学材料科学与工程学院, 常州 213164
2 中南大学材料科学与工程学院, 长沙 410083
3 常州大学江苏省材料表面技术重点实验室, 常州 213164
EFFECT OF HIGH TEMPERATURE PRE-AGEING AND LOW-TEMPERATURE RE-AGEING ON MECHANICAL PROPERTIES AND INTERGRANULAR CORROSION SUSCEPTIBILITY OF Al-Mg-Si-Cu ALLOYS
LI Hai1,3(), MAO Qingzhong1, WANG Zhixiu1,2,3, MIAO Fenfen1, FANG Bijun1, SONG Renguo1,3, ZHENG Ziqiao2
1 School of Materials Science and Engineering, Changzhou University, Changzhou 213164
2 School of Materials Science and Engineering, Central South University, Changsha 410083
3 Jiangsu Key Laboratory of Materials Surface Technology, Changzhou University, Changzhou 213164
引用本文:

李海, 毛庆忠, 王芝秀, 苗芬芬, 方必军, 宋仁国, 郑子樵. 高温预时效+低温再时效对Al-Mg-Si-Cu合金力学性能及晶间腐蚀敏感性的影响[J]. 金属学报, 2014, 50(11): 1357-1366.
Hai LI, Qingzhong MAO, Zhixiu WANG, Fenfen MIAO, Bijun FANG, Renguo SONG, Ziqiao ZHENG. EFFECT OF HIGH TEMPERATURE PRE-AGEING AND LOW-TEMPERATURE RE-AGEING ON MECHANICAL PROPERTIES AND INTERGRANULAR CORROSION SUSCEPTIBILITY OF Al-Mg-Si-Cu ALLOYS[J]. Acta Metall Sin, 2014, 50(11): 1357-1366.

全文: PDF(7547 KB)   HTML
摘要: 

采用拉伸性能测试和晶间腐蚀浸泡实验, 研究了高温预时效+低温再时效对Al-Mg-Si-Cu合金拉伸性能和晶间腐蚀敏感性的影响, 并通过TEM观察基体和晶界析出相特征. 与常规T6时效(180 ℃, 8 h)相比, 优化双级时效(180 ℃, 2 h+160 ℃, 120 h)能在不降低6061铝合金拉伸性能的基础上彻底消除晶间腐蚀敏感性, 此时铝合金析出特征为基体分布着高密度b ″相兼有少量Q' 相, 而晶界析出相呈现球状、断续分布. 这种特征组织的形成源于降低再时效温度造成基体和晶界扩散速率的下降幅度不同, 导致再时效过程中基体预析出相因长大速度较慢而保持较好的强化效果; 晶界预析出相因粗化速度较快而呈现球形、断续分布.

关键词 铝合金双级时效力学性能晶间腐蚀微观组织    
Abstract

It is well known that in peak-aged conditions age-hardenable aluminum alloys usually have high strength but low corrosion resistance. Low corrosion resistance of peak-aged Al alloys limits their applications in some corrosive conditions. In order to enhance the corrosion resistance, over-ageing treatments are often carried out but at the expense of strength. Therefore, it is of great industrial value to improve both strength and corrosion resistance of Al alloys simultaneously. In the present work, a novel two-step ageing treatment consisted of high-temperature pre-ageing and low-temperature re-ageing was proposed to improve both the tensile properties and intergranular corrosion (IGC) resistance of Al-Mg-Si-Cu alloys simultaneously. Furthermore, the effects of pre-ageing time at 180 ℃ and re-ageing time at 160 ℃ on the mechanical property and IGC susceptibility of the 6061 Al alloy were investigated by tensile testing and immersion corrosion testing. It was shown that after the optimized two-step ageing treatment of 180 ℃, 2 h+160 ℃, 120 h, the 6061 Al alloy had slightly higher strength than that of the conventional peak-aged samples and no susceptibility to intergranular corrosion. TEM observation revealed that the microstructures of the two-step treated 6061 Al alloy were consisted of high density of b″ phase along with small amount of Q' phase in the matrix and discontinuously distributed, spherical grain boundary precipitates, which led to high strength and IGC resistance of the 6061 Al alloy, respectively. The formation of the characteristic microstructures were attributed to the different decreased level of atomic diffusion rate between the matrix and grain boundary when decreasing from relatively high pre-ageing temperature to low re-ageing temperature, which resulted in the relatively slow growth of the matrix pre-precipitates and rapid coarsening of the grain boundary pre-precipitates, simultaneously.

Key wordsaluminum alloy    two-step ageing    mechanical property    intergranular corrosion    microstructure
收稿日期: 2014-08-16     
ZTFLH:  TG147  
基金资助:*国家自然科学基金项目51301027, 国家重点基础研究发展计划项目2005CB623705及江苏省高校自然科学基金14KJB430002资助
作者简介: null

李 海, 男, 1973年生, 副教授

图1  不同预时效状态6061铝合金的拉伸性能
图2  经180 ℃预时效15 min, 2 h和8 h的6061铝合金再在160 ℃时效不同时间的拉伸性能
图3  预时效状态6061铝合金的腐蚀形貌
图4  双级时效后6061铝合金的腐蚀形貌
Ageing treatment Corrosion mode Corrosion depth / mm
180 ℃, 15 min IGC 180
180 ℃, 15 min+160 ℃, 24 h IGC 210
180 ℃, 15 min+160 ℃, 72 h IGC 220
180 ℃, 15 min+160 ℃, 120 h IGC 250
180 ℃, 15 min+160 ℃, 240 h IGC 210
180 ℃, 15 min+160 ℃, 360 h IGC 190
180 ℃, 2 h IGC 230
180 ℃, 2 h+160 ℃, 24 h IGC 150
180 ℃, 2 h+160 ℃, 72 h IGC 120
180 ℃, 2 h+160 ℃, 120 h UC -
180 ℃, 2 h+160 ℃, 240 h UC -
180 ℃, 2 h+160 ℃, 360 h UC -
180 ℃, 8 h IGC 360
180 ℃, 8 h+160 ℃, 24 h IGC 310
180 ℃, 8 h+160 ℃, 72 h IGC 240
180 ℃, 8 h+160 ℃, 120 h IGC 190
180 ℃, 8 h+160 ℃, 240 h IGC 120
180 ℃, 8 h+160 ℃, 360 h UC -
表1  不同时效状态6061铝合金的腐蚀行为及腐蚀深度
图5  预时效处理后6061铝合金的基体和晶界的TEM像
图6  双级时效后6061铝合金基体和晶界的TEM像
[1] Williams J C, Starke E A. Acta Mater, 2003; 51: 5775
[2] Pogatscher S, Antrekowitscha H, Leitner H, Ebner T, Uggowitzer P J. Acta Mater, 2011; 59: 3352
[3] Zhang X M. Acta Metall Sin, DOI: 10.11900/0412.1961.2013.00835
[3] (张新明. 金属学报, DOI: 10.11900/0412.1961.2013.00835)
[4] Yang W C, Wang M P, Sheng X F, Zhang Q, Wang Z A. Acta Metall Sin, 2010; 46: 1481
[4] (杨文超, 汪明朴, 盛晓菲, 张 茜, 王正安. 金属学报, 2010; 46: 1481)
[5] El-Menshawy K, El-Sayed A W A, El-Bedawy M E, Ahmed H A, El-Raghy S M. Corros Sci, 2012; 54: 167
[6] Svenningsen G, Lein J E, Bjørgum A, Nordlien J H, Yu Y, Nisanciouglu K. Corros Sci, 2006; 48: 226
[7] Svenningsen G, Larsen M H, Nordlien J H, Nisanciouglu K. Corros Sci, 2006; 48: 258
[8] Svenningsen G, Larsen M H, Nordlien J H, Nisanciouglu K. Corros Sci, 2006; 48: 3969
[9] Svenningsen G, Larsen M H, Walmsley J C, Nordlien J H, Nisancioglu K. Corros Sci, 2006; 48: 1528
[10] He L Z, Chen Y B, Cui J Z, Sun X F, Guan H R, Hu Z Q. Corros Sci Protect Technol, 2004; 16: 129
[10] (何立子, 陈彦博, 崔建忠, 孙晓峰, 管恒荣, 胡壮麒. 腐蚀科学与防护技术, 2004; 16: 129)
[11] Wang Z X, Li H, Gu J H, Song R G, Zheng Z Q. Chin J Nonferrous Met, 2012; 22: 3348
[11] (王芝秀, 李 海, 顾建华, 宋仁国, 郑子樵. 中国有色金属学报, 2012; 22: 3348)
[12] Liang W J, Rometsch P A, Cao L F, Birbilis N. Corros Sci, 2013; 76: 119
[13] Dif R, Bes B, Ehrstro J C, Sigli J C, Warner J T, Lassince P, Ribes H. Mater Sci Forum, 2000; 331-337: 1613
[14] Pan D Z, Wang Z X, Li H, Zheng Z Q. Chin J Nonferrous Met, 2010; 20: 435
[14] (潘道召, 王芝秀, 李 海, 郑子樵. 中国有色金属学报, 2010; 20: 435)
[15] Lin L, Zheng Z Q, Li J F. Rare Met Mater Eng, 2012; 41: 1004
[15] (林 莉, 郑子樵, 李劲风. 稀有金属材料与工程, 2012; 41: 1004)
[16] Li H, Pan D Z, Wang Z X, Zheng Z Q. Acta Metall Sin, 2010; 46: 494
[16] (李 海, 潘道召, 王芝秀, 郑子樵. 金属学报, 2010; 46: 494)
[17] Sheng X F, Yang W C, Xia C D, Gong J, Wang M P, Li Z, Zhang Q. Chin J Nonferrous Met, 2012; 22: 1276
[17] (盛晓菲, 杨文超, 夏承东, 龚 静, 汪明朴, 李 周, 张 茜. 中国有色金属学报, 2012; 22: 1276
[18] Wang S Q, Lu Z, Dai S L, Yang S J, Jiang H F. J Aeronaut Mater, 2003; (S1): 79
[18] (王胜强, 陆 政, 戴圣龙, 杨守杰, 姜海峰. 航空材料学报, 2003; (增刊): 79)
[19] Buha J, Lumley R N, Crosky A G, Hono K. Acta Mater, 2007; 55: 3015
[20] Ninive P H, Strandlie A, Gulbrandsen-Dahl S, Lefebvre W, Marioara C D, Andersen S J, Friis J, Holmestad R, Løvvik O M. Acta Mater, 2014; 69: 126
[21] Wang B, Wang X J, Song H, Yan J J, Qiu T, Liu W Q, Li H. Acta Metall Sin, 2014; 50: 685
[21] (汪 波, 王晓姣, 宋 辉, 严菊杰, 邱 涛, 刘文庆, 李 慧. 金属学报, 2014; 50: 685)
[22] Chakrabarti D J, Laughlin D E. Prog Mater Sci, 2004; 49: 389
[23] Gaber A, Gaffar M A, Mostafa M S, Abo Zeid E F. J Alloys Compd, 2007; 429: 167
[24] Weatherly G C, Perovic A, Mukhopakhyay N K, Lloyd D J, Perovic D D. Metall Mater Trans, 2001; 32A: 213
[25] Miao W F, Laughlin D E. Scr Mater, 1999; 40: 873
[26] Wang Z X, Li H, Miao F F, Sun W J, Fang B J, Song R G, Zheng Z Q. Mater Sci Eng, 2014; A590: 267
[27] Li C X. Master Thesis, Central South University, Changsha, 2010
[27] (李朝兴. 中南大学硕士学位论文, 长沙, 2010)
[1] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[2] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[3] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[4] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[5] 刘兴军, 魏振帮, 卢勇, 韩佳甲, 施荣沛, 王翠萍. 新型钴基与Nb-Si基高温合金扩散动力学研究进展[J]. 金属学报, 2023, 59(8): 969-985.
[6] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[7] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[8] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[9] 王宗谱, 王卫国, Rohrer Gregory S, 陈松, 洪丽华, 林燕, 冯小铮, 任帅, 周邦新. 不同温度轧制Al-Zn-Mg-Cu合金再结晶后的{111}/{111}近奇异晶界[J]. 金属学报, 2023, 59(7): 947-960.
[10] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[11] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[12] 冯艾寒, 陈强, 王剑, 王皞, 曲寿江, 陈道伦. 低密度Ti2AlNb基合金热轧板微观组织的热稳定性[J]. 金属学报, 2023, 59(6): 777-786.
[13] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[14] 王长胜, 付华栋, 张洪涛, 谢建新. 冷轧变形对高性能Cu-Ni-Si合金组织性能与析出行为的影响[J]. 金属学报, 2023, 59(5): 585-598.
[15] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.