Please wait a minute...
金属学报  2014, Vol. 50 Issue (10): 1244-1252    DOI: 10.11900/0412.1961.2014.00105
  本期目录 | 过刊浏览 |
预时效+冷轧变形+再时效对6061铝合金微观组织和力学性能的影响
李海1,3(), sup1, 王芝秀1,2,3, 苗芬芬1, 方必军1, 宋仁国1,3, 郑子樵2
1 常州大学材料科学与工程学院, 常州213164
2 中南大学材料科学与工程学院, 长沙410083
3 常州大学江苏省材料表面技术重点实验室, 常州213164
EFFECT OF THE THERMO-MECHANICAL TREATMENT OF PRE-AGEING, COLD-ROLLING AND RE-AGEING ON MICROSTRUCTURES AND MECHANICAL PROPERTIES OF 6061 Al ALLOY
LI Hai1,3(), MAO Qingzhong1, WANG Zhixiu1,2,3, MIAO Fenfen1, FANG Bijun1, SONG Renguo1,3, ZHENG Ziqiao2
1 School of Materials Science and Engineering, Changzhou University, Changzhou 213164
2 School of Materials Science and Engineering, Central South University, Changsha 410083
3 Jiangsu Key Laboratory of Materials Surface Technology, Changzhou University, Changzhou 213164
引用本文:

李海, , 王芝秀, 苗芬芬, 方必军, 宋仁国, 郑子樵. 预时效+冷轧变形+再时效对6061铝合金微观组织和力学性能的影响[J]. 金属学报, 2014, 50(10): 1244-1252.
Hai LI, Qingzhong MAO, Zhixiu WANG, Fenfen MIAO, Bijun FANG, Renguo SONG, Ziqiao ZHENG. EFFECT OF THE THERMO-MECHANICAL TREATMENT OF PRE-AGEING, COLD-ROLLING AND RE-AGEING ON MICROSTRUCTURES AND MECHANICAL PROPERTIES OF 6061 Al ALLOY[J]. Acta Metall Sin, 2014, 50(10): 1244-1252.

全文: PDF(4843 KB)   HTML
摘要: 

采用硬度测试、拉伸实验、XRD分析和TEM观察等方法, 研究了一种新型形变热处理(预时效+冷轧变形+再时效)对时效硬化型铝合金微观组织和力学性能的影响. 结果表明, 这种形变热处理不仅能够大幅度提高6061铝合金强度, 还能使其保持良好塑性. 经过优化处理(180 ℃, 2 h欠时效+75%压下量冷轧变形+100 ℃, 48 h再时效), 6061铝合金的抗拉强度和屈服强度分别为560和542 MPa, 延伸率为8.5%. 微观组织观察表明, 合金强度的提高来源于析出强化、位错强化、位错胞强化和高Taylor因子的综合作用; 相对于冷轧状态, 延伸率的改善则与再时效过程中强化相的再析出和位错的轻微回复有关.

关键词 铝合金形变热处理力学性能微观组织强化机制    
Abstract

In order to improve mechanical properties of age-hardenable Al alloys markedly based on the conventional processing conditions, a novel thermo-mechanical treatment, which was consisted of pre-ageing, cold-rolling and re-ageing, was proposed in the present work. The effects of the thermo-mechanical treatment on microstructure evolution and mechanical properties of the 6061 Al alloy were investigated further by hardness measurement, tensile testing, XRD, TEM and HRTEM. It was shown that both the increased strength and elongation of the 6061 Al alloy were achieved simultaneously by the thermo-mechanical treatment. Especially, after the combination of under-ageing at 180 ℃ for 2 h, cold-rolling with the thickness reduction of 75% and re-ageing at 100 ℃ for 48 h, the ultimate tensile strength and yield strength of the alloy were 560 and 542 MPa, respectively, and the elongation was about 8.5%. The strength increment of the thermo-mechanically treated 6061 Al alloy was attributed mainly to the additional introduction of dislocation strengthening, dislocation cell strengthening and high Taylor factor value except for precipitation strengthening as compared to the conventional peak-aged alloy. Furthermore, the improved elongation of the thermo-mechanically treated 6061 Al alloy was mainly due to both the re-precipitation of strengthening precipitates and slight recovery of dislocations during re-ageing, which increased the accumulation ability of dislocations during the tensile deformation.

Key wordsAl alloy    thermo-mechanical treatment    mechanical property    microstructure    strengthening mechanism
收稿日期: 2014-03-12     
ZTFLH:  TG147  
基金资助:*国家重点基础研究发展计划项目2005CB623705, 国家自然科学基金项目51301027及江苏省高校自然科学基金项目14KJB430002资助
作者简介: null

李 海, 男, 1973年生, 副教授

图1  冷轧变形6061铝合金在75, 100和125 ℃再时效硬化曲线
图2  形变热处理过程中6061铝合金的拉伸性能
图3  ST, UA, PA和OA 4种预处理状态下6061铝合金的微观组织
图4  UA+CR和OA+CR及其100 ℃, 48 h再时效4种状态下6061铝合金的微观组织
Condition Cube Goss Copper S Brass MA
UA 46.0 19.5 15.5 0 18.5 2.6
UA+CR 10.0 21.5 23.0 16.0 29.5 3.1
UA+CR+RA (100 ℃, 48 h) 10.0 20.0 22.5 15.5 30.5 3.1
表1  UA, UA+CR和UA+CR+RA (100 ℃, 48 h) 3种试样的织构组分、体积分数及平均Taylor因子
[1] Williams J C, Starke E A. Acta Mater, 2003; 51: 5775
[2] Masami S. Mater Sci Forum, 2006; 519-521: 11
[3] Yang M X, Yang G, Liu Z D, Wang C, Hu C, Huang C X. Acta Metall Sin, 2012; 48: 164
[3] (杨沐鑫, 杨 钢, 刘正东, 王 昌, 胡 超, 黄崇湘. 金属学报, 2012; 48: 164)
[4] Shaeri M H, Salehi M T, Seyyedein S H, Abutalebi M R, Park J K. Mater Des, 2014; 54: 250
[5] Xie Z L, Wu X L, Xie J J, Hong Y S. Acta Metall Sin, 2008; 44: 803
[5] (谢子令, 武晓雷, 谢季佳, 洪友士. 金属学报, 2008; 44: 803)
[6] Sha G, Tugcu K, Liao X Z, Trimby P W, Murashkin M Y, Valiev R Z, Ringer S P. Acta Mater, 2014; 63: 169
[7] Zhang B, Yuan S Q, Zhang X F, Lv S, Wang C. Trans Nonferrous Met Soc China, 2008; 18: 1067
[7] (张 兵, 袁守谦, 张西锋, 吕 爽, 王 超. 中国有色金属学报, 2008; 18: 1067)
[8] Mehr V Y, Toroghinejad M R, Rezaeian A. Mater Sci Eng, 2014; A17: 40
[9] Xiong Y, He T T, Guo Z Q, Chen Z G, Zhang L F, Ren F Z. Trans Mater Heat Treat, 2011; 32: 63
[9] (熊 毅, 贺甜甜, 郭志强, 陈正阁, 张凌峰, 任凤章. 材料热处理学报, 2011; 32: 63)
[10] Nageswara rao P, Jayaganthan R. Mater Des, 2012; 39: 226
[11] Tang J G, Zhang X M, Deng Y L, Du Y X, Chen Z Y. Comput Mater Sci, 2006; 38: 395
[12] Farshidi M H, Kazeminezhad M, Miyamoto H. Mater Sci Eng, 2013; A563: 60
[13] Murayma M, Horita Z, Hono K. Acta Mater, 2001; 49: 21
[14] Buha J, Lumley R N, Crosky A G, Hono K. Acta Mater, 2007; 55: 3015
[15] Esmaeili S, Wang X, Lloyd D J, Poole W J. Metall Mater Trans, 2003; 34A: 751
[16] Taylor G I. J Inst Met, 1938; 62: 307
[17] Martin J W. Precipitation Hardening. Oxford: Butterworth-Heinemann, 1998: 78
[18] Wang X, Esmaeili S, Lloyd D J. Metall Mater Trans, 2006; 37A: 2691
[19] Delmas F, Casanove M J, Lours P, Couret A, Coujou A. Mater Sci Eng, 2004; A373: 80
[20] Cayron C, Buffat P A. Mater Sci Forum, 2000; 331: 1001
[21] Urrutia I G, Morris M, Morris D G, Mater Sci Eng, 2005; A394: 399
[22] Panigrahi S K, Jayaganthan R. Mater Sci Eng, 2011; A528: 3147
[23] Serizawa A, Hirosawa S, Sato T. Metall Mater Trans, 2008; 39A: 243
[24] Serizawa A, Sato T, Poole W J. Philos Mag Lett, 2010; 90: 279
[25] Starink M J, Wang S C. Acta Mater, 2003; 51: 5131
[26] Esmaeili S, Lloyd D J, Poole W J. Acta Mater, 2003; 51: 2243
[27] Marthinsen K, Nes E. Mater Sci Eng, 1997; A234-236: 1095
[28] Nes E, Marthinsen K. Mater Sci Eng, 2002; A322: 176
[29] Zhao Y H, Liao X Z, Cheng S, Ma E, Zhu Y T. Adv Mater, 2006; 18: 2280
[1] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[3] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[4] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[5] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[6] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[7] 刘兴军, 魏振帮, 卢勇, 韩佳甲, 施荣沛, 王翠萍. 新型钴基与Nb-Si基高温合金扩散动力学研究进展[J]. 金属学报, 2023, 59(8): 969-985.
[8] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[9] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[10] 王宗谱, 王卫国, Rohrer Gregory S, 陈松, 洪丽华, 林燕, 冯小铮, 任帅, 周邦新. 不同温度轧制Al-Zn-Mg-Cu合金再结晶后的{111}/{111}近奇异晶界[J]. 金属学报, 2023, 59(7): 947-960.
[11] 冯艾寒, 陈强, 王剑, 王皞, 曲寿江, 陈道伦. 低密度Ti2AlNb基合金热轧板微观组织的热稳定性[J]. 金属学报, 2023, 59(6): 777-786.
[12] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[13] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[14] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[15] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.