Please wait a minute...
金属学报  2014, Vol. 50 Issue (11): 1311-1318    DOI: 10.11900/0412.1961.2014.00102
  本期目录 | 过刊浏览 |
交流电场增强45钢中低温粉末法渗硼特性
程健1, 谢飞1,2(), 孙力1, 朱丽曼1, 潘建伟3
1 常州大学材料科学与工程学院, 常州 213164
2 常州大学江苏省材料表面技术重点实验室, 常州 213164
3 常州大学怀德学院, 常州 213016
CHARACTERIZATION OF ALTERNATING CURRENT FIELD ENHANCED PACK BORIDING FOR 45 CARBON STEEL AT LOW AND MEDIUM TEMPERATURES
CHENG Jian1, XIE Fei1,2(), SUN Li1, ZHU Liman1, PAN Jianwei3
1 School of Materials Science and Engineering, Changzhou University, Changzhou 213164
2 Key Laboratory of Materials Surface Engineering of Jiangsu Province, Changzhou University, Changzhou 213164
3 Huaide College, Changzhou University, Changzhou 213016
引用本文:

程健, 谢飞, 孙力, 朱丽曼, 潘建伟. 交流电场增强45钢中低温粉末法渗硼特性[J]. 金属学报, 2014, 50(11): 1311-1318.
Jian CHENG, Fei XIE, Li SUN, Liman ZHU, Jianwei PAN. CHARACTERIZATION OF ALTERNATING CURRENT FIELD ENHANCED PACK BORIDING FOR 45 CARBON STEEL AT LOW AND MEDIUM TEMPERATURES[J]. Acta Metall Sin, 2014, 50(11): 1311-1318.

全文: PDF(4023 KB)   HTML
摘要: 

通过在粉末法渗硼过程中施加交流电场, 对45钢进行中低温粉末法渗硼, 研究交流电场增强中低温粉末法渗硼特性. 结果表明, 位于交流电场平行电极间不同位置处试样渗硼效果一致. 施加适当的交流电场, 可显著增加中低温(450~800 ℃)下的渗硼速度, 硼化物层厚度与渗硼温度呈线性关系. 交流电场增强渗硼渗层的形貌与常规渗硼的相似, 呈锯齿状垂直楔入基体, 其厚度与渗硼时间关系曲线呈抛物线型. 采用交流电场易于获得单一Fe2B相渗层. 在800 ℃渗硼时, 交流电场增强渗硼的硼化物层厚度随电场电流增加而增加. 交流电场的促渗作用是电场强化试样内的扩散、渗剂中的反应与扩散及提高渗罐内的实际温度等的综合结果.

关键词 粉末法渗硼交流电场中低温扩散    
Abstract

Conventional pack boriding (CPB) has shortcomings of high processing temperature and long process duration for producing boride coating with an effective thickness. Alternating current field enhanced pack boriding (ACFEPB) is a new approach for overcoming those shortcomings in CPB. In the present work, ACFEPB was carried out on a 45 medium carbon steel at low and medium temperatures (450~800 ℃) by applying a 50 Hz alternating current field (ACF) during the pack boriding for revealing effects of ACF on the treatment. Understanding characterization of the ACFEPB better will lay a good foundation for investigating the mechanism of the ACF on the boriding and optimizing the new process. Experimental results showed that nearly same thick boride coatings were obtained in target surface of samples located in different positions right between the parallel ACF electrodes, while less thick boride coatings were found in samples not within the region. All ACFEPB samples' boride coatings were thicker than that of corresponding CPB, which demonstrated that applying an appropriate ACF could notably enhance the boriding. A linear relation was shown in the profile of ACFEPB coating thickness vs the boriding temperature. The coating thickness of the ACFEPB at 800 ℃ increased with the increase of the ACF current. And the coating thickness vs the boriding time exhibited a parabolic character. Morphology similar to the CPB coating was presented in the ACFEPB coating. The saw-tooth shaped boride penetrated perpendicularly to the substrate. However, fewer or no FeB phase was found in ACFEPB coating when comparing with CPB coating treated at same temperature with same duration. More micro-porosities were found in the near surface zone of single Fe2B phase coating by ACFEPB, which was an indication that more vacancies moved from the substrate to the near surface region. Although a temperature rise caused by the ACF was detected in the sample during the boriding, the heating effect of the ACF to the sample and the boriding media was not the main reason for ACF's enhancing effect to boriding. The ACF’s electro-magnetic effect should be the main factor for the enhancement. The ACF induced current would lead more vacancies in the treated sample, which promoted the diffusion in the substrate. The ACF should also intensify chemical reactions and diffusions in the boriding media with the energy from the ACF and the ACF's electro-magnetic stirring effect. More active boron-containing species formed and moved to the sample's surface to accelerate the formation of borides.

Key wordspack boriding    alternating current field    low and medium temperature    diffusion
收稿日期: 2014-06-25     
ZTFLH:  TG156.87  
基金资助:* 国家自然科学基金资助项目51171032
作者简介: null

程 健, 男, 1990年生, 硕士生

Process Mass fraction of media Soaking time / h Temperature / ℃ Current / A
formulation
ACFEPB1 10%Fe-B+5%KBF4+ 4 800 4
CPB1 1%charcoal+84%SiC 0
ACFEPB21~ACFEPB26 5%Fe-B+5%KBF4+ 4 800 1~6
1%charcoal+89%SiC
ACFEPB31~ACFEPB39 10%Fe-B+5%KBF4+ 4 400~800 4
CPB31~CPB39 1%charcoal+84%SiC 0
ACFEPB40~ACFEPB44 0~6 800 4
CPB40~ CPB44 0~6 800 0
ACFEPB50~ ACFEPB54 0~6 600 4
表1  交流电场增强粉末法渗硼(ACFEPB)和常规粉末法渗硼(CPB)工艺参数
图1  渗硼实验装置简图
图2  试样经800 ℃渗硼4 h后渗层厚度与试样在渗罐内位置的关系
图3  交流电场电流与渗层厚度和电场引起的试样温升的关系曲线
图4  试样经400~800 ℃渗硼4 h后的渗硼层厚度
图5  交流电场引起的温升对渗硼层厚度的影响
图6  渗层厚度与渗硼时间关系曲线
图7  渗层厚度的平方与渗硼时间关系
图8  不同工艺的渗硼层组织形貌
图9  2种工艺渗硼层的扩散区形貌
图10  不同工艺处理试样的XRD谱
图11  不同工艺处理渗硼层显微硬度分布曲线
[1] Usta M, Ozbek I, Bindal C, Ucisik A H, Ingole S, Liang H. Vacuum, 2006; 80: 1321
[2] Oliveira C K N, Casteletti L C, Lombardi Neto A, Totten G E, Hech S C. Vacuum, 2010; 84: 792
[3] Sinha A K. Boriding (Boronizing) of Steels. Materials Park: ASM International, 1991: 437
[4] Yu L G, Chen X J, Khor K A, Sundararajan G. Acta Mater, 2005; 53: 2361
[5] Ipek M, Celebi Efe G, Ozbek I, Zeythin S, Bindal C. J Mater Eng Perform, 2012; 21: 733
[6] Miyashita F, Yokota K. Surf Coat Technol, 1996; 84: 334
[7] Huang Z R, Li P N, Xie F, Pan J W. Rare Earth, 2000; 18: 205
[8] Lu X X, Liang C, Gao X X, An J, Yang X H. ISIJ Int, 2011; 51: 799
[9] Anthymidis K G, Stergiousdis E, Tsipas D N. Mater Res Bull, 2001; 51: 156
[10] Anthymidis K G, Stergiousdis G, Tsipas D N. Sci Technol Adv Mater, 2002; 3:303
[11] Bartsch K, Leonhardt A. Surf Coat Technol, 1999; 116-119: 386
[12] Gunes I, Ulker S, Taktak S. Mater Des, 2011; 32: 2380
[13] Xie F, Sun L, Pan J W. Surf Coat Technol, 2012; 206: 2839
[14] Angkurarach L, Juijerm P. Arch Metall Mater, 2012; 57: 799
[15] Xie F, Zhu Q H, Lu J J. Solid State Phenom, 2006; 118: 167
[16] Xie F, Zhou Z H, Wang D L. Acta Metall Sin, 2008; 44: 810
[16] (谢 飞, 周正华, 王大亮. 金属学报, 2008; 44: 810)
[17] Xie F, Hu J, Zhou Z H, Hu H B, Li H J, Pan J W. Surf Eng, 2011; 27: 134
[18] Xie F, Pan J W. IHTSE, 2012; 6(2): 80
[19] Xie F, Sun L, Cheng J. Surf Eng, 2013; 29: 240
[20] Chen F S, Wang K L. Surf Coat Technol, 1999; 115: 239
[21] Wu B S, Xie Z J, He L. Trans Mater Heat Treat, 1985; 6(2): 20
[21] (吴宝善, 谢泽嘉, 何 力. 金属热处理学报, 1985; 6(2): 20)
[22] Wang G Z,Wang W Z. Thermo-Chemical Treatment for Steels. Beijing: China Railway Press, 1980: 293
[22] (王国佐,王万智. 钢的化学热处理. 北京: 中国铁道出版社, 1980: 293)
[23] Wuhan Research Institute of Materials Protection,Shanghai Research Institute of Materials. Metallographic Maps of Thermo-Chemically Treated Irons and Steels. Beijing: Mechanical Industry Press, 1980: 52
[23] (武汉材料保护研究所,上海材料研究所. 钢铁化学热处理金相图谱. 北京: 机械工业出版社, 1980: 52)
[24] КИЛИК И Н,translated by Li W Q. Characteristics of Steels' Induction Heat Treatment. Beijing: Industry Press of China, 1962: 3
[24] (КИЛИК И Н 著,李文卿译. 感应加热热处理工艺特点. 北京: 中国工业出版社, 1962: 3)
[25] Asoka-Kumar P, O'Brien K, Lynn K G, Simpson P J, Rodbell K P. Appl Phys Lett, 1996; 68: 406
[26] Kondo T, Yasuhara M, Kuramoto T, Kodera Y, Ohyanagi M, Munir Z A. J Mater Sci, 2008; 43: 6400
[27] Zhou Y, Wang Q, Sun D L, Han X L. J Alloys Compd, 2011; 509: 1201
[28] Xie F, Cheng J. In: Chinese Heat Treatment Society ed., Proc 20th IFHTSE, Beijing: Chinese Heat Treatment Society, 2012: 293
[29] Cheng J, Xie F, Sun L, Pan J W. Sci Sin Technol, 2014; 44: 315
[1] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] 徐文国, 郝文江, 李应举, 赵庆彬, 卢炳聿, 郭和一, 刘天宇, 冯小辉, 杨院生. 微量AlTiInconel 690合金高温氧化行为的影响[J]. 金属学报, 2023, 59(12): 1547-1558.
[3] 刘路军, 刘政, 刘仁辉, 刘永. Nd90Al10 晶界调控对晶界扩散磁体磁性能和微观结构的影响[J]. 金属学报, 2023, 59(11): 1457-1465.
[4] 李赛, 杨泽南, 张弛, 杨志刚. 珠光体-奥氏体相变中扩散通道的相场法研究[J]. 金属学报, 2023, 59(10): 1376-1388.
[5] 沈莹莹, 张国兴, 贾清, 王玉敏, 崔玉友, 杨锐. SiCf/TiAl复合材料界面反应及热稳定性[J]. 金属学报, 2022, 58(9): 1150-1158.
[6] 李细锋, 李天乐, 安大勇, 吴会平, 陈劼实, 陈军. 钛合金及其扩散焊疲劳特性研究进展[J]. 金属学报, 2022, 58(4): 473-485.
[7] 化雨, 陈建国, 余黎明, 司永宏, 刘晨曦, 李会军, 刘永长. Cr铁素体耐热钢与奥氏体耐热钢的异种材料扩散连接接头组织演变及力学性能[J]. 金属学报, 2022, 58(2): 141-154.
[8] 刘仲武, 何家毅. 钕铁硼永磁晶界扩散技术和理论发展的几个问题[J]. 金属学报, 2021, 57(9): 1155-1170.
[9] 陈胜虎, 戎利建. 超细晶铁素体-马氏体钢的高温氧化成膜特性及其对Pb-Bi腐蚀行为的影响[J]. 金属学报, 2021, 57(8): 989-999.
[10] 李娟, 赵宏龙, 周念, 张英哲, 秦庆东, 苏向东. CoCrFeNiCu高熵合金与304不锈钢真空扩散焊[J]. 金属学报, 2021, 57(12): 1567-1578.
[11] 刘晨曦, 毛春亮, 崔雷, 周晓胜, 余黎明, 刘永长. 低活化铁素体/马氏体钢组织调控及其固相连接研究进展[J]. 金属学报, 2021, 57(11): 1521-1538.
[12] 孙正阳, 杨超, 柳文波. UO2烧结过程的相场模拟[J]. 金属学报, 2020, 56(9): 1295-1303.
[13] 王超, 张旭, 王玉敏, 杨青, 杨丽娜, 张国兴, 吴颖, 孔旭, 杨锐. SiCf/Ti65复合材料界面反应与基体相变机理[J]. 金属学报, 2020, 56(9): 1275-1285.
[14] 丁文, 王小京, 刘宁, 秦亮. CoCrFeMnNi高熵合金作为中间层的Cu/304不锈钢扩散连接研究[J]. 金属学报, 2020, 56(8): 1084-1090.
[15] 孙正阳, 王昱天, 柳文波. 气孔与晶界相互作用的相场模拟[J]. 金属学报, 2020, 56(12): 1643-1653.