Please wait a minute...
金属学报  2014, Vol. 50 Issue (10): 1210-1216    DOI: 10.11900/0412.1961.2014.00097
  本期目录 | 过刊浏览 |
含Ag抗菌双相不锈钢组织及抗菌性能研究
向红亮(), 郭培培, 刘东
福州大学机械工程及自动化学院, 福州 350108
MICROSTRUCTURE AND ANTIBACTERIAL PROPERTIES OF Ag-BEARING DUPLEX STAINLESS STEEL
XIANG Hongliang(), GUO Peipei, LIU Dong
School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350108
引用本文:

向红亮, 郭培培, 刘东. 含Ag抗菌双相不锈钢组织及抗菌性能研究[J]. 金属学报, 2014, 50(10): 1210-1216.
Hongliang XIANG, Peipei GUO, Dong LIU. MICROSTRUCTURE AND ANTIBACTERIAL PROPERTIES OF Ag-BEARING DUPLEX STAINLESS STEEL[J]. Acta Metall Sin, 2014, 50(10): 1210-1216.

全文: PDF(5624 KB)   HTML
摘要: 

分别添加纯Ag和Cu-Ag合金颗粒制备了含Ag抗菌双相不锈钢并进行了不同温度固溶处理. 借助ESEM, XRD和TEM观察并分析组织中含Ag相显微结构及分布. 采用覆膜法测试了材料广谱抗菌性能, 并与CD4MCu不锈钢及含Cu抗菌双相不锈钢的抗菌效果进行了对比. 结果表明, 经1050和1150 ℃固溶处理, 添加纯Ag制备的材料基体上都分布着8 μm 左右的含Ag相颗粒, 提高固溶温度并不能使其在基体中的固溶性得到改善. 1150 ℃固溶后, 不锈钢组织中还分布着直径约为45 nm的含Ag相颗粒. 添加Cu-Ag合金制备的不锈钢经1050和1150 ℃固溶处理, 温度升高能增强含Ag相在基体中的溶解程度, 且添加的合金颗粒越小, 含Ag相越易固溶. 添加150~300 μm Cu-Ag合金制备的不锈钢经1150 ℃固溶处理, 含Ag相在γ相上几乎完全固溶, 而在a相上呈弥散态分布, 且其平均粒径直径约18 nm. 抗菌性能检测表明, 添加不同粒度Cu-Ag合金制备的2种不锈钢都具有优异的抗菌性能, 添加纯Ag颗粒制备的不锈钢抗菌性能良好, CD4MCu不具备抗菌能力.

关键词 含Ag抗菌双相不锈钢Cu-Ag合金含Ag相粒径固溶温度抗菌性能    
Abstract

Nowadays, the events of bacterial infection, food poisoning and biological corrosion damage are increasingly arising. It is urgent to develop new antibacterial material to fight against the drug-resistant bacteria. In this work, Ag-bearing antibacterial duplex stainless steels were prepared by adding Ag or Cu-Ag alloy particles. The microstructure and distribution of Ag-rich phases and Ag electrovalence of the materials after solution treatment at different temperatures have been discussed in detail by ESEM, XRD and TEM. The antibacterial effects of the materials were tested by film-cover method, and compared with CD4MCu and Cu-bearing antibacterial duplex stainless steel. The results indicated that some Ag-bearing phases in diameter of about 8 μm in the matrix of the material prepared by adding Ag after the solution treatment at 1050 and 1150 ℃ were observed, and increasing temperature could not improve the solution solubility of Ag-bearing phases. In addition, some Ag-bearing phases in diameter of 45 nm was found in the matrix of the material after solution treatment at 1150 ℃. For the material prepared by adding Cu-Ag alloy particles after solution treatment at 1050 and 1150 ℃, the solubility of Ag-bearing phases increased with the solution temperature rising. And the smaller the Cu-Ag particles were, the easier the Ag-bearing phases dissolved. For the material prepared by adding Cu-Ag alloy particles in diameter of 150~300 mm after the solution treatment at 1150 ℃, Ag-bearing particles were completely dissolved into γ phase while some in diameter of about 18 nm were evenly distributed in a phase. Antibacterial tests showed that Ag-bearing antibacterial duplex stainless steels prepared by adding different sizes of Cu-Ag alloy particles exhibitted excellent antibacterial effect. The material prepared by adding Ag granules had the antibacterial effect.

Key wordsAg-bearing antibacterial duplex stainless steel    Cu-Ag alloy    Ag-bearing phase    particle size    solution temperature    antibacterial property
收稿日期: 2014-03-04     
ZTFLH:  TG172  
基金资助:*福建省高等学校新世纪优秀人才支持计划项目 JA10014和福建省科技厅重点项目 2014H003资助
作者简介: null

向红亮, 男, 1972年生, 副教授, 博士

Specimen C Si Mn S P Cr Ni Mo Cu Ag Fe
A1, A2, A3 0.03 0.54 0.74 0.002 0.03 25.91 5.91 1.95 3.16 0.135 Bal.
B1, B2, B3 0.03 0.53 0.79 0.002 0.03 25.74 5.89 1.93 3.14 0.121 Bal.
C1, C2, C3 0.03 0.52 0.79 0.002 0.03 25.82 5.78 1.94 3.16 0.128 Bal.
D 0.03 0.53 0.76 0.001 0.02 25.68 5.90 1.93 3.17 0 Bal.
表1  4种材料的化学成分
图1  5种试样的SEM像
图2  试样A3和B3的XRD谱
Specimen Phase Cr Ni Cu Ag Fe
A1 a 30.19 5.34 2.39 - 58.64
γ 23.31 8.31 5.25 - 60.54
Particle 17.27 1.50 18.94 47.53 3.61
B1 a 29.01 5.49 2.74 - 59.89
γ 23.32 7.98 5.92 - 61.17
Particle 12.47 1.57 66.02 13.04 4.56
A3 a 29.09 5.10 2.45 - 59.49
γ 22.28 8.68 5.31 - 61.52
Particle 17.92 1.47 19.45 46.85 3.88
B3 a 28.66 5.41 2.32 - 59.38
γ 23.22 8.11 7.49 - 59.57
C3 a 29.02 5.57 2.41 - 59.07
γ 23.02 7.90 7.03 - 59.68
Particle 12.53 1.68 65.10 12.93 4.42
表2  5种试样中各相元素含量
图3  试样A3和B3的TEM像
图4  试样A3和B3的高分辨TEM像
Specimen Phase Cu Ag Ni Cr Fe
A3 a 2.79 - 5.25 31.68 59.26
γ 7.55 - 8.75 22.61 61.06
Particle 8.89 41.87 2.24 19.11 24.86
B3 a 2.36 0.03 5.40 27.56 58.56
γ 7.40 0.12 8.41 20.43 59.06
Particle 2.07 34.31 1.73 17.75 38.99
表3  3和4中各相主要元素的含量
Specimen Bacteria count / (cfu?mL-1) R / %
3 h 24 h 3 h 24 h
A1 1.90×105 >1.05×105 84.8 <91.6
A2 2.11×105 >1.10×105 83.1 <91.2
A3 1.93×105 >1.05×105 84.6 <91.6
B1 3.75×103 <10 99.7 >99.9
B2 1.75×104 <10 99.6 >99.8
B3 1.25×103 <10 99.9 >99.9
C1 1.00×104 <10 99.2 >99.9
C2 3.75×104 <10 99.4 >99.9
C3 2.50×103 <10 99.8 >99.9
D >1.10×106 1.04×106 <11.3 <16.7
316L 1.25×106 1.25×106 0 0
表4  与菌液作用不同时间的各试样的抗菌率
图5  与菌液作用3h后试样杀菌效果图
[1] Jones C M, Hoek E M V. J Nanoparticle Res, 2010; 12: 1530
[2] Tanoira R P, Jorge C P, Endrino J L, Barrena E G, Horwat D, Pierson J F, Estenban J. J Phys, 2010; 252: 1
[3] Li B, Liu X Y, Meng F H, Chang J, Ding C. Mater Chem Phys, 2009; 118: 99
[4] Li M Q, Li D C, Qu L J, Zhang A Q, Zhang E L. In: Zhao H ed., 2011 6th International Forum on Strategic Technology, Harbin: IEEE Changwon Section, 2011: 179
[5] Guo P P, Xiang H L, Li J X, Liu D. Spec Cast Nonferrous Alloys, 2013; 33: 470
[5] (郭培培, 向红亮, 李敬鑫, 刘 东. 特种铸造及有色合金, 2013; 33: 470)
[6] Hong I T, Koo C H. Mater Sci Eng, 2005; A393: 213
[7] Lu M Q, Chen S H, Dong J S, Yang K. Chin J Mater Res, 2005; 19: 581
[7] (吕曼祺, 陈四红, 董加胜, 杨 柯. 材料研究学报, 2005; 19: 581)
[8] Li H W, Zhang T B, Zhang T Y. Acta Metall Sin, 2008; 44: 39
[8] (李恒武, 张体宝, 张体勇. 金属学报, 2008; 44: 39)
[9] Li N, Yang K. J Mater Sci Technol, 2010; 26: 941
[10] Xiang H L, Fan J C, Liu D, Guo P P. Acta Metall Sin, 2012; 48: 1081
[10] (向红亮, 范金春, 刘 东, 郭培培. 金属学报, 2012; 48: 1081)
[11] Xiang H L, Fan J C, Liu D, Gu X. Acta Metall Sin, 2012; 48: 1089
[11] (向红亮, 范金春, 刘 东, 顾 兴. 金属学报, 2012; 48: 1089)
[12] Dong J S, Chen S H, Lv M Q, Yang K. Mater Rev, 2004; 18(3): 41
[12] (董加胜, 陈四红, 吕曼祺, 杨 柯. 材料导报, 2004; 18(3): 41)
[13] Yang K, Dong J S, Chen S H, Lu M Q. Chin J Mater Res, 2006; 20: 523
[13] (杨 柯, 董加胜, 陈四红, 吕曼祺. 材料研究学报, 2006; 20: 523)
[14] Yokota T, Tochihara M, Ohta M. Kawasaki Steel Technical Report, 2002; 46: 37
[15] Liao K H, Ou K L, Cheng H C, Lin C T, Peng P W. Appl Surf Sci, 2010; 256: 3642
[16] Fang Y Y. PhD Dissertation, I-Shou University, Taibei, China, 2009
[16] (方怡雅. 义守大学博士学位论文, 中国台北, 2009)
[17] Zhou Y Z. PhD Dissertation, I-Shou University, Taibei, China, 2011
[17] (周雍智. 义守大学博士学位论文, 中国台北, 2011)
[18] Shen Z L. In: Tian Z L ed., Corrosion Resistance of Metal Materials of the 11th Academic Conference Proceedings, Baotou: Chinese Corrosion and Protection Society, 2008: B-25
[18] (沈忠良. 见: 田志凌主编, 耐蚀金属材料第十一届学术年会论文集, 包头: 中国腐蚀与防护学会, 2008: B-25)
[19] Li N, Zhang W, Xu Y G, Zeng W, Jia W X. Spec Steel, 2004; 25: 42
[20] Lin G, Shen J C, Jiang L Z. Chin Pat, 200710039746.3, 2007
[20] (林刚, 沈继程, 江来珠. 中国专利, 200710039746.3, 2007)
[21] Xiang H L, He F S, Liu D. Acta Metall Sin, 2009; 45: 1456
[21] (向红亮, 何福善, 刘 东. 金属学报, 2009; 45: 1456)
[22] Xiang H L, Fan J C, Liu D, Gu X. Acta Metall Sin, 2012; 48: 1089
[22] (向红亮, 范金春, 刘 东, 顾 兴. 金属学报, 2012; 48: 1089)
[23] Wang H, Liang C H. Corros Sci Prot Technol, 2004; 16: 96
[23] (王 华, 梁成浩. 腐蚀科学与防护技术, 2004; 16: 96)
[24] Yokota T, Tochihara M, Ohta M. Kawasaki Steel Technical Report, 2002; 46: 37
[25] Ales P, Milan K, Renata V, Robert P, Jana S, Vladimir K, Petr H, Radek Z Libor K. Biomaterials, 2009; 31: 6333
[1] 张奇亮, 王玉超, 李光达, 李先军, 黄一, 徐云泽. EH36钢在不同粒径沙砾冲击下的冲刷腐蚀耦合损伤行为[J]. 金属学报, 2023, 59(7): 893-904.
[2] 王孟, 杨永强, Trofimov Vyacheslav, 宋长辉, 周瀚翔, 王迪. 粉末粒径对AlSi10Mg合金选区激光熔化成形的影响[J]. 金属学报, 2023, 59(1): 147-156.
[3] 许坤, 王海川, 孔辉, 吴朝阳, 张战. 一种新分组团簇动力学模型模拟铝合金中的Al3Sc析出[J]. 金属学报, 2021, 57(6): 822-830.
[4] 金淼, 李文权, 郝硕, 梅瑞雪, 李娜, 陈雷. 固溶温度对Mn-N型双相不锈钢拉伸变形行为的影响[J]. 金属学报, 2019, 55(4): 436-444.
[5] 陈雷, 郝硕, 梅瑞雪, 贾伟, 李文权, 郭宝峰. 节约型双相不锈钢TRIP效应致塑性增量及其固溶温度依赖性[J]. 金属学报, 2019, 55(11): 1359-1366.
[6] 史显波,徐大可,闫茂成,严伟,单以银,杨柯. 新型含Cu管线钢的微生物腐蚀行为研究[J]. 金属学报, 2017, 53(2): 153-162.
[7] 彭聪, 张书源, 任玲, 杨柯. 冷却速率对含Cu钛合金显微组织和性能的影响[J]. 金属学报, 2017, 53(10): 1377-1384.
[8] 左小伟,郭睿,安佰灵,张林,王恩刚. 横向磁场下定向凝固Cu-6%Ag合金的组织、硬度和电阻率*[J]. 金属学报, 2016, 52(2): 143-150.
[9] 王帅, 杨春光, 徐大可, 沈明钢, 南黎, 杨柯. 热处理对3Cr13MoCu马氏体不锈钢抗菌性能的影响[J]. 金属学报, 2014, 50(12): 1453-1460.
[10] 向红亮 范金春 刘东 顾兴. 抗菌时效处理对含Cu双相不锈钢组织和性能的影响 II. 耐蚀及抗菌性能[J]. 金属学报, 2012, 48(9): 1089-1096.
[11] 闫志巧 陈峰 蔡一湘. 不同粒径Ti粉的高速压制行为和烧结性能[J]. 金属学报, 2012, 48(3): 379-384.
[12] 赵世贤 宋晓艳 王明胜 魏崇斌 张久兴 刘雪梅. WC/Co粉体粒径匹配与放电等离子烧结致密化[J]. 金属学报, 2009, 45(4): 497-502.
[13] 贺佳; 孟亮 . 退火温度对双相纤维复合Cu-12%Ag合金织构的影响[J]. 金属学报, 2008, 44(1): 43-48 .
[14] 刘嘉斌; 曾跃武; 孟亮 . Cu-71.8%Ag共晶体中两相的台阶界面及晶体取向[J]. 金属学报, 2007, 43(8): 803-806 .
[15] 贺佳; 刘嘉斌; 孟亮 . 应变对Cu-12%Ag合金织构强度及分布的影响[J]. 金属学报, 2007, 43(6): 643-647 .