Please wait a minute...
金属学报  2014, Vol. 50 Issue (9): 1102-1108    DOI: 10.11900/0412.1961.2014.00064
  本期目录 | 过刊浏览 |
PtAl2单相涂层的高温抗氧化性能及失效机制研究
柳泉, 阳颖飞, 鲍泽斌(), 朱圣龙, 王福会
中国科学院金属研究所金属腐蚀与防护国家重点实验室, 沈阳 110016
OXIDATION PROPERTY AND FAILURE MECHANISM OF A SINGLE PHASE PtAl2 COATING
LIU Quan, YANG Yingfei, BAO Zebin(), ZHU Shenglong, WANG Fuhui
State Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
引用本文:

柳泉, 阳颖飞, 鲍泽斌, 朱圣龙, 王福会. PtAl2单相涂层的高温抗氧化性能及失效机制研究[J]. 金属学报, 2014, 50(9): 1102-1108.
Quan LIU, Yingfei YANG, Zebin BAO, Shenglong ZHU, Fuhui WANG. OXIDATION PROPERTY AND FAILURE MECHANISM OF A SINGLE PHASE PtAl2 COATING[J]. Acta Metall Sin, 2014, 50(9): 1102-1108.

全文: PDF(2725 KB)   HTML
摘要: 

在镍基铸造高温合金K38G上采用脉冲电镀的方法沉积Pt镀层, 通过分步加热粉末包埋渗Al处理后, 获得表层为单相PtAl2, 内层为β-NiAl的Pt-Al涂层. 分别对单相PtAl2涂层进行1100 ℃静态氧化及循环氧化测试, 并分析涂层在2种氧化条件下的氧化行为及失效机制. 结果表明, 单相PtAl2涂层表现出良好的抗静态氧化能力, 初期快速增重主要来自于θ-Al2O3的生成, 很快θ-Al2O3转变为α-Al2O3且增重趋于平缓. 但是, 单相PtAl2涂层的抗循环氧化能力较差, 循环氧化过程中产生的热应力会导致部分区域PtAl2层剥离或脱落, 继而引发涂层过早失效. 因此, 单相PtAl2涂层不适用于高温负载服役环境, 其在循环氧化过程中的失效和退化主要来自于PtAl2层剥落以及剥落区附近β-NiAl层Al元素的快速消耗.

关键词 镍基高温合金Pt-Al涂层热重分析静态氧化循环氧化    
Abstract

Pt-modified aluminide coating has attracted great attention due to its advantage of the integrated property in resisting both high temperature oxidation and hot corrosion. By the presence of Pt, the spallation trend of the grown oxide scale and the detrimental effect of S can be restrained at a very low level. Besides, Pt could promote α-Al2O3 formation and stabilize β-NiAl phase. Thus Pt-modified aluminide (Pt-Al) coating has been widely used in some crucial applications requiring reliability and extended service life. There are mainly PtAl2, β-(Ni, Pt)Al and γ/γ ′-NiPtAl phases existing inside Pt-Al coating. In this work, a single phase PtAl2 coating was prepared on a Ni-based K38G superalloy through pulse-electroplating of Pt and pack aluminization under stepped heating mode. At 1100 ℃ , the isothermal oxidation behavior of the single phase PtAl2 coating was evaluated by thermogravimetric analysis (TGA). Cyclic oxidation test of the PtAl2 coating was performed within a vertical muffle furnace at the same temperature. The results indicate that the singular PtAl2 coating possesses quite good isothermal oxidation resistance. However, its resistance against cyclic oxidation is very poor. The cyclic stress induced by repeated heating and cooling has caused visible detachment of PtAl2 coating layer, and the spallation of PtAl2 in further would lead to a premature failure of the whole coating system. Partial spallation of PtAl2 layer, including undesirable consumption of Al inside β-NiAl nearby the spallation acts the main reason responsible for the final failure. Accordingly, it is not appropriate to apply single phase PtAl2 coating in the high temperature services involving stress and load. The degradation mechanism of the singular PtAl2 coating is investigated by discussing the stress generated from cyclic heating and cooling.

Key wordsNi-based superalloy    Pt-Al coating    thermogravimetric analysis (TGA)    isothermal oxidation    cyclic oxidation
    
ZTFLH:  TG174.44  
基金资助:* 国家自然科学基金项目51301184, 国家重点基础研究发展计划项目2012CB625100和国家高技术研究发展计划项目2012AA03A512资助
作者简介: null

柳 泉, 男, 1981年生, 博士

图1  K38G合金镀Pt及后续渗Al处理后的截面形貌
图2  K38G合金样品镀Pt及后续渗Al处理后的XRD谱
图3  PtAl2单相涂层1100 ℃氧化20 h后表面的XRD谱
图4  PtAl2单相涂层1100 ℃静态氧化20 h的增重曲线
图5  PtAl2单相涂层1100 ℃静态氧化20 h后截面形貌
图6  K38G合金及PtAl2单相涂层在1100 ℃循环氧化条件下的质量变化曲线
图7  K38G合金及PtAl2单相涂层在1100 ℃循环氧化200 cyc后的截面形貌
图8  PtAl2单相涂层在1100 ℃下循环氧化200 cyc后的截面形貌及对应的EDS扫描结果
图9  PtAl2单相涂层冷热交变循环过程中失效行为示意图
[1] Padture N P, Gell M, Jordan E H. Science, 2002; 296: 280
[2] Cape T. US Pat, 3102004, 1963
[3] Boone D H, Deb P, Purivs L I, Rigney D V. J Vac Sci Technol, 1985; 3: 2557
[4] Boone D H, Streiff R. J Vac Sci Technol, 1985; 3: 2578
[5] Deb P, Boone D H, Manley T F. J Vac Sci Technol, 1987; 5: 3366
[6] Bai L X, Lou H Y, Wu W T. Mater Prot, 1988; 1: 11
[6] (白林祥, 楼翰一, 吴维弢. 材料保护, 1988; 1: 11)
[7] Bai L X, Wu W T. Precious Met, 1995; 16: 24
[7] (白林祥, 吴维弢. 贵金属, 1995; 16: 24)
[8] Liu G, Niu Y, Wang W, Wu W T. J Chin Soc Corros Prot, 2001; 21: 54
[8] (刘 刚, 牛 焱, 王 文, 吴维弢. 中国腐蚀与防护学报, 2001; 21: 54)
[9] Das D K, Singh V, Joshi S V. Metall Mater Trans, 2000; 31A: 2037
[10] Das D K, Singh V, Joshi S V. Oxid Met, 2002; 57: 245
[11] Vialas N, Monceau D. Surf Coat Technol, 2006; 201: 3846
[12] Angenete J, Stiller K. Surf Coat Technol, 2002; 150: 107
[13] Angenete J, Stiller K, Bakchinova E. Surf Coat Technol, 2004; 176: 272
[14] Hong S J, Kim Y D, Lee G H, Cho I S, Lee C S, Kang S G. Intermetallics, 2014; 46: 65
[15] Hopkin N, Wilson L F. Platinum Met Rev, 1960; 4: 56
[16] Shi G M, Zhang Z L, Shi F L, Yan X F. Mater Heat Treat, 2012; 41: 159
[16] (施国梅, 张尊礼, 史凤玲, 闫秀芬. 材料热处理技术, 2012; 41: 159)
[17] Gleeson B, Wang W, Hayashi S, Sordelet D J. Mater Sci Forum, 2004; 461-464: 213
[18] Hayashi S, Wang W, Sordelet D J, Gleeson B. Metall Mater Trans, 2005; 36A: 1769
[19] Lou H Y, Wang F H, Xia B J, Zhang L X. Corros Sci Prot Technol, 1993; 5: 101
[19] (楼翰一, 王福会, 夏邦杰, 张立新. 腐蚀科学与防护技术, 1993; 5: 101)
[20] Lou H Y, Wang F H, Zhu S L, Xia B J, Zhang L X. Surf Coat Technol, 1994; 63: 105
[21] Benoist J, Badawi K F, Malié A, Ramade C. Surf Coat Technol, 2005; 194: 48
[22] Wright P K. Mater Sci Eng, 1998; A245: 191
[23] Preis W, Sitte W. Solid State Ionics, 2008; 179: 765
[24] Chung Y C, Kim C K, Wuensch B J. J Appl Phys, 2000; 87: 2747
[25] Wen M, Jiang D H, Chen Z Q, Li Y Q, Zhang J M, Zhang K H, Hua W M. Precious Met, 2010; 31: 16
[25] (闻 明, 姜东慧, 陈志全, 李燕琼, 张俊敏, 张昆华, 华伟明. 贵金属, 2010; 31: 16)
[26] Bao Z B, Wang Q M, Li W Z, Liu X, Gong J, Xiong T Y, Sun C. Corros Sci, 2009; 51: 860
[27] Bao Z B, Wang Q M, Jiang S M, Gong J, Sun C. Corros Sci, 2008; 50: 2372
[28] Moretto P, Bressers J, Arrell D J. Mater Sci Eng, 1999; A272: 310
[1] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[2] 王磊, 刘梦雅, 刘杨, 宋秀, 孟凡强. 镍基高温合金表面冲击强化机制及应用研究进展[J]. 金属学报, 2023, 59(9): 1173-1189.
[3] 江河, 佴启亮, 徐超, 赵晓, 姚志浩, 董建新. 镍基高温合金疲劳裂纹急速扩展敏感温度及成因[J]. 金属学报, 2023, 59(9): 1190-1200.
[4] 穆亚航, 张雪, 陈梓名, 孙晓峰, 梁静静, 李金国, 周亦胄. 基于热力学计算与机器学习的增材制造镍基高温合金裂纹敏感性预测模型[J]. 金属学报, 2023, 59(8): 1075-1086.
[5] 张禄, 余志伟, 张磊成, 江荣, 宋迎东. GH4169高温合金热机械疲劳循环损伤机理及数值模拟[J]. 金属学报, 2023, 59(7): 871-883.
[6] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[7] 黄鼎, 乔岩欣, 杨兰兰, 王金龙, 陈明辉, 朱圣龙, 王福会. 基体表面喷丸处理对纳米晶涂层循环氧化行为的影响[J]. 金属学报, 2023, 59(5): 668-678.
[8] 王迪, 贺莉丽, 王栋, 王莉, 张思倩, 董加胜, 陈立佳, 张健. Pt-Al涂层对DD413合金高温拉伸性能的影响[J]. 金属学报, 2023, 59(3): 424-434.
[9] 刘来娣, 丁彪, 任维丽, 钟云波, 王晖, 王秋良. DZ445镍基高温合金高温长时间氧化形成的多层膜结构[J]. 金属学报, 2023, 59(3): 387-398.
[10] 于少霞, 王麒, 邓想涛, 王昭东. GH3600镍基高温合金极薄带的制备及尺寸效应[J]. 金属学报, 2023, 59(10): 1365-1375.
[11] 祝国梁, 孔德成, 周文哲, 贺戬, 董安平, 疏达, 孙宝德. 选区激光熔化 γ' 相强化镍基高温合金裂纹形成机理与抗裂纹设计研究进展[J]. 金属学报, 2023, 59(1): 16-30.
[12] 王迪, 王栋, 谢光, 王莉, 董加胜, 陈立佳. Pt-Al涂层对一种镍基单晶高温合金抗热腐蚀行为的影响[J]. 金属学报, 2021, 57(6): 780-790.
[13] 朱玉平, 盛乃成, 谢君, 王振江, 荀淑玲, 于金江, 李金国, 杨林, 侯桂臣, 周亦胄, 孙晓峰. 高钨镍基高温合金K416BW相的析出行为[J]. 金属学报, 2021, 57(2): 215-223.
[14] 刘超, 姚志浩, 江河, 董建新. GH4720Li合金毫米级粗大晶粒热变形获得均匀等轴晶粒的可行性及工艺控制[J]. 金属学报, 2021, 57(10): 1309-1319.
[15] 张小丽, 冯丽, 杨彦红, 周亦胄, 刘贵群. 二次枝晶取向对镍基高温合金晶粒竞争生长行为的影响[J]. 金属学报, 2020, 56(7): 969-978.