Please wait a minute...
金属学报  2014, Vol. 50 Issue (9): 1095-1101    DOI: 10.11900/0412.1961.2013.00774
  本期目录 | 过刊浏览 |
MOCVD方法在SrFe12O19表面生长Fe薄膜及其吸波性能
刘渊, 刘祥萱, 王煊军, 陈鑫
第二炮兵工程大学603教研室, 西安 710025
Fe THIN FILMS GROWN ON SURFACE OF SrFe12O19 BY MOCVD METHOD AND ITS ABSORBING PROPERTIES
LIU Yuan, LIU Xiangxuan, WANG Xuanjun, CHEN Xin
No.603 Faculty, Xi'an Research Institute of High Technology, Xi'an 710025
引用本文:

刘渊, 刘祥萱, 王煊军, 陈鑫. MOCVD方法在SrFe12O19表面生长Fe薄膜及其吸波性能[J]. 金属学报, 2014, 50(9): 1095-1101.
Yuan LIU, Xiangxuan LIU, Xuanjun WANG, Xin CHEN. Fe THIN FILMS GROWN ON SURFACE OF SrFe12O19 BY MOCVD METHOD AND ITS ABSORBING PROPERTIES[J]. Acta Metall Sin, 2014, 50(9): 1095-1101.

全文: PDF(3215 KB)   HTML
摘要: 

采用金属有机化学气相沉积(MOCVD)工艺, 以高纯Fe(CO)5和SrFe12O19为原料, 高纯N2为载气, 在SrFe12O19表面沉积连续Fe膜, 从而制得Fe-SrFe12O19复合材料. 用XRD, SEM, EDS和矢量网络分析仪对粉末的结构及电磁性能进行表征并对其吸波性能进行研究. 结果表明, SrFe12O19表面沉积的膜层为纯a-Fe相, 厚度约为0.5 mm, 沉积薄膜比较均匀完整地覆盖在SrFe12O19表面. SrFe12O19表面沉积a-Fe膜后, 其电磁性能发生明显改变, 吸波性能有较好改善. 沉积时间30 min时制备的样品有最佳的吸波效果, 涂层厚度为1.5~3.0 mm时, 最小反射率均低于-19 dB, 在6.8~18.0 GHz均能实现吸波强度低于-10 dB. 随着厚度的增加, 反射率峰值先减少后增加, 厚度为2.0 mm时, 达到最小值-21.2 dB.

关键词 羰基铁金属有机化学气相沉积电磁微波吸收    
Abstract

Nowadays, more and more researchers pay attention to the microwave absorbing materials with the increase of electromagnetic pollution and the development of stealth technology for military platforms. Traditional microwave absorbers, such as ferrite, metal powder, conductive magnetic fibers, magnetic flake powder, and nanoparticles and so on, are facing some common problems such as large specific gravity, narrow absorption bandwidth, large match thickness and poor absorption performance. Composites with core-shell structures are becoming promising microwave absorbing material because such structure can exhibit magnetic and dielectric characteristics through the proper selection of core and shell materials. Thus, Fe(CO)5 deposition on the SrFe12O19 surface has been considered for the fabrication of a new composite that possesses the advantages of these two materials. This new composite might also obtain remarkable microwave absorption through thin layer absorbers in the entire 2~18 GHz frequency range. The Fe-SrFe12O19 composites with core-shell structures were prepared by metal organic chemical vapor deposition (MOCVD) using the SrFe12O19 and iron pentacarbonyl [Fe(CO)5] as the precursors. XRD, SEM, EDS and a vector network analyzer were used to characterize the structure and electromagnetic properties of the samples. The structure and morphology analyses show that the composites have complete core-shell structures with SrFe12O19 as core and Fe layers as shell. Fe nanoparticles were uniformly deposited on the surface of SrFe12O19 with thickness of about 0.5 mm at the reaction temperature of 180 ℃ with N2 flow rate of 30 mL/min for 30 min. Simulation studies show that SrFe12O19 electromagnetic properties changed significantly and the absorbing properties got evidently improvement after Fe deposited on its surface. The samples prepared with deposition time of 30 min have the best absorbing properties. A reflection loss (RL) value exceeding -10 dB in the range of 6.8~18.0 GHz frequency was obtained by selecting an appropriate thickness of the absorber layer from 1.5 to 3.0 mm. Moreover, a minimum RL of -21.2 dB at was obtained for a 2.0 mm thick layer. Fe-deposited SrFe12O19 by MOCVD can significantly improve the electromagnetic properties of SrFe12O19 and Fe-SrFe12O19 composites could be used as an effective microwave absorption material.

Key wordscarbonyl iron    MOCVD    electromagnetic    microwave absorption
    
ZTFLH:  TB383  
基金资助:*陕西省自然科学基金资助项目 2012SXJJ005
作者简介: null

作者简介: 刘 渊, 男, 1986年生, 博士生

图1  不同反应时间Fe-SrFe12O19的XRD谱
图2  SrFe12O19和不同反应时间Fe-SrFe12O19的SEM像
图3  Fe-SrFe12O19截面的SEM像和EDS分析
图4  SrFe12O19和不同反应时间Fe -SrFe12O19样品的电磁参数
  
图6  SrFe12O19 和Fe-SrFe12O19的衰减常数a与频率的关系
图7  SrFe12O19和Fe-SrFe12O19样品的三维吸波效果图
图8  不同厚度下Fe-SrFe12O19样品的反射率曲线及涂层反射率理论计算值与实测值的比较
[1] Huang Y B, Qian J S, Zhang J Y. J Chin Coal Soc, 2010; 35: 135
[1] (黄煜镔, 钱觉时, 张建业. 煤炭学报, 2010; 35: 135)
[2] Hirata A, Morita M, Shiozawa T. IEEE Trans Electromagn, 2003; 45C: 109
[3] Liu Y, Liu X X, Wang X J, Zhang Z Y, Li R, Guo L. Chin J Nonferrous Met, 2013; 23: 168
[3] (刘 渊, 刘祥萱, 王煊军, 张泽洋, 李 茸, 郭 磊. 中国有色金属学报, 2013; 23: 168)
 Zhou J, Wang W, Sun Z G, Gong J G. Acta Metall Sin, 2010; 46: 967
(周 静, 王 维, 孙志刚, 宫建国. 金属学报, 2010; 46: 967)
[5] Liu Y, Liu X X, Wang X J, Chen X. J Chin Ceram Soc, 2013; 41: 755
[5] (刘 渊, 刘祥萱, 王煊军, 陈 鑫. 硅酸盐学报, 2013; 41: 755)
[6] Wang Y F, Li Q L, Zhang C R, Jing H X. J Alloys Compd, 2009; 467: 284
[7] Yao X B, Hu G G, Yin P, Fang Q Q, Lv Q R. Funct Mater, 2002; 33: 633
[7] (姚学标, 胡国光, 尹 萍, 方庆清, 吕庆荣. 功能材料, 2002; 33: 633)
[8] Jing H X, Li Q L, Ye Y, Yang X F. Acta Mater Comp Sin, 2013; 30: 130
[8] (景红霞, 李巧玲, 叶 云, 杨晓峰. 复合材料学报, 2013; 30: 130)
[9] Liu Y, Liu X X, Wang X J. J Alloys Compd, 2014; 584: 249
[10] Tong G X, Gong J G, Zhang W Y, Zhang W, Wang W, Dong D M. Acta Metall Sin, 2008; 44: 1001
[10] (童国秀, 宫建国, 张五一, 张 巍, 王 维, 董德明. 金属学报, 2008; 44: 1001)
[11] Liu Y, Liu X X, Wang X J, Wen W. Chin Phys Lett, 2014; 31: 047702
[12] Cheng Y L, Dai J M, Wu Y P. J Magn Magn Mater, 2010; 32: 97
[13] Pan X F, Mu G H, Shen H G, Gu M Y. Appl Surf Sci, 2007; 253: 4119
[14] Pan X F, Shen H G, Qiu J X, Gu M Y. Mater Chem Phys, 2007; 101: 505
[15] Pan X F, Shen H G, Qiu J X, Gu M Y. J Mater Sci, 2007; 42: 2086
[16] Zhang Z Y, Liu X X, Wang X J, Wu Y P, Liu Y. J Magn Magn Mater, 2012; 324: 2177
[17] Zhang Z Y, Liu X X, Wang X J, Wu Y P, Rong L. J Alloys Compd, 2012; 525: 114
[18] Zhang S Y, Cao Q X. Mater Sci Eng, 2012; B177: 678
[19] Liu Y, Liu X X, Chen X, Wang X J. J Inorg Mater, 2013; 28: 1328
[19] (刘 渊, 刘祥萱, 陈 鑫, 王煊军. 无机材料学报, 2013; 28: 1328)
[20] Yang Y, Xu C L, Xia Y X, Wang T, Li F S. J Alloys Compd, 2010; 493: 549
[21] Zhang B S, Feng Y, Xiong J, Yang Y, Lu H X. IEEE Trans Magn, 2006; 42: 1778
[22] Naito Y, Suetake K. IEEE Trans Microwave Theory Technol, 1971; 19: 65
[23] Meshram M R, Agrawal N K, Sinha B, Misra P S. J Magn Magn Mater, 2004; 271: 207
[24] Maeda T, Sugimoto S, Kagotani T, Tezuka N, Inomata K. J Magn Magn Mater, 2004; 281: 195
[1] 唐海燕, 刘锦文, 王凯民, 肖红, 李爱武, 张家泉. 连铸中间包加热技术及其冶金功能研究进展[J]. 金属学报, 2021, 57(10): 1229-1245.
[2] 张林, 郭晓, 高建文, 邓安元, 王恩刚. 电磁搅拌对TiB2颗粒增强钢组织和力学性能的影响[J]. 金属学报, 2020, 56(9): 1239-1246.
[3] 郑锦灿, 刘润聪, 王晓东. 热镀锌工艺中锌液表面流速的在线电磁测量[J]. 金属学报, 2020, 56(7): 929-936.
[4] 李师居, 李洋, 陈建强, 李中豪, 许光明, 李勇, 王昭东, 王国栋. 电磁振荡场作用下双辊铸轧制备2099Al-Li合金的偏析行为及组织性能[J]. 金属学报, 2020, 56(6): 831-839.
[5] 任忠鸣,雷作胜,李传军,玄伟东,钟云波,李喜. 电磁冶金技术研究新进展[J]. 金属学报, 2020, 56(4): 583-600.
[6] 唐海燕, 李小松, 张硕, 张家泉. 基于恒过热控制的感应加热中间包内钢水的流动与传热[J]. 金属学报, 2020, 56(12): 1629-1642.
[7] 吴春雷,李德伟,朱晓伟,王强. 电磁旋流水口连铸技术对小方坯凝固组织形貌和宏观偏析的影响[J]. 金属学报, 2019, 55(7): 875-884.
[8] 李文涛,王振玉,张栋,潘建国,柯培玲,汪爱英. 电弧复合磁控溅射结合热退火制备Ti2AlC涂层[J]. 金属学报, 2019, 55(5): 647-656.
[9] 何明, 李显亮, 王情伟, 王连钰, 王强. 磁屏蔽对电磁出钢系统中感应加热电源功率损耗的影响[J]. 金属学报, 2019, 55(2): 249-257.
[10] 陶然, 赵玉涛, 陈刚, 怯喜周. 电磁场下原位合成纳米ZrB2 np/AA6111复合材料组织与性能研究[J]. 金属学报, 2019, 55(1): 160-170.
[11] 帅三三, 林鑫, 肖武泉, 余建波, 王江, 任忠鸣. 横向静磁场对激光熔化增材制造Al-12%Si合金凝固组织的影响[J]. 金属学报, 2018, 54(6): 918-926.
[12] 龚永勇, 程书敏, 钟玉义, 张云虎, 翟启杰. 脉冲磁致振荡凝固技术[J]. 金属学报, 2018, 54(5): 757-765.
[13] 吴国华, 陈玉狮, 丁文江. 高性能镁合金凝固组织控制研究现状与展望[J]. 金属学报, 2018, 54(5): 637-646.
[14] 刘政, 陈志平, 陈涛. 坩埚尺寸和电磁频率对半固态A356铝合金浆料流动的影响[J]. 金属学报, 2018, 54(3): 435-442.
[15] 王强, 何明, 朱晓伟, 李显亮, 吴春雷, 董书琳, 刘铁. 电磁场技术在冶金领域应用的数值模拟研究进展[J]. 金属学报, 2018, 54(2): 228-246.