Please wait a minute...
金属学报  2014, Vol. 50 Issue (8): 1003-1010    DOI: 10.11900/0412.1961.2013.00753
  本期目录 | 过刊浏览 |
镍基Inconel-718合金TIG焊部分熔化区组织变化*
叶欣1,2, 华学明1,2(), 王敏1,2, 楼松年1,2
1 上海交通大学材料科学与工程学院焊接工程技术研究所, 上海 200240
2 上海交通大学上海市激光制造与材料改性重点实验室, 上海 200240
MICROSTRUCTURE EVOLUTION OF PARTIALLY MELTED ZONE OF TIG WELDING JOINT OF Ni-BASED INCONEL-718 SUPERALLOY
YE Xin1,2, HUA Xueming1,2(), WANG Min1,2, LOU Songnian1,2
1 Welding Engineering Institute, College of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240
2 Shanghai Key Laboratory of Materials Laser Processing and Modification, Shanghai Jiao Tong University, Shanghai 200240
引用本文:

叶欣, 华学明, 王敏, 楼松年. 镍基Inconel-718合金TIG焊部分熔化区组织变化*[J]. 金属学报, 2014, 50(8): 1003-1010.
Xin YE, Xueming HUA, Min WANG, Songnian LOU. MICROSTRUCTURE EVOLUTION OF PARTIALLY MELTED ZONE OF TIG WELDING JOINT OF Ni-BASED INCONEL-718 SUPERALLOY[J]. Acta Metall Sin, 2014, 50(8): 1003-1010.

全文: PDF(8773 KB)   HTML
摘要: 

以轧制态、铸态、铸后均匀化三种状态的Inconel-718镍基合金薄板为对象, 进行钨极氩弧焊(TIG)接头部分熔化区(PMZ)的研究. 通过OM, SEM, EDS等手段观测不同焊接线能量下PMZ的微观组织. 通过EDS测得晶内奥氏体、偏析区、Laves相的合金元素含量后, 采用热力学软件Themo-Calc计算其理论固液相线温度, 比较当母材状态不同时焊接接头PMZ各相的液化及凝固温度, 分析液膜存在的温度范围大小. 结果表明, Inconel-718镍基合金TIG焊接接头PMZ存在微观组织遗传性, 铸态、铸后均匀化接头PMZ中仍然保持树枝晶的结构特征, 而轧制态接头PMZ中仍是等轴晶. 接头PMZ中皆析出链状Laves和颗粒状MC相, 母材中原有偏析区消失. 铸态母材固液相线间距最大, 铸后均匀化的次之, 轧制态的最小. 当母材状态、几何尺寸相同时, 随着焊接线能量的增加, PMZ宽度增大. 当焊接线能量相同时, 铸态PMZ宽度大于铸后均匀化和轧制态PMZ宽度.

关键词 镍基Inconel-718合金PMZ偏析液膜树枝晶    
Abstract

Element segregation, such as Nb in Ni-based Inconel-718 superalloy, causes the precipitation of low melting point phase during solidification. The actual base metal can melt in a lower temperature and the structural continuity is damaged during welding thermo cycle curve. The liquid film easily generates between austenite grains and leads to stress concentration before solidifying into the low melting point phase. Microstructure evolution of Inconel-718 welding joint increases the hot crack sensitivity and changes mechanical property of the joint. The partially melted zone (PMZ) is close to the molten metal in the fusion zone, which is the most liquation crack sensitive region of welding joint heat affected zone (HAZ). Different microstructures exists among wrought, as-cast and homogenization Inconel-718 superalloy inducing weldability differences of these material. Especially, the solidus-liquidus curve differences of low melting point phase in PMZ notably affect the high temperature mechanical property of welding joint. The wrought, as-cast and homogenization Inconel-718 superalloy sheets were respectively welded by tungsten inert gas arc welding (TIG) with different heat inputs. The microstructure of PMZ was observed by OM and SEM. Alloy element content of intradendritic austenite, interdendritic segregated region and Laves phase was investigated by EDS. The theoretical solidus-liquidus temperature of these phases was calculated by Thermo-Calc software. The melting and solidification temperature of austenite and Laves in PMZ of different base metal was investigated to analyze the temperature range for the formulation of liquid film. The results show that the microstructure heredity phenomenon obviously exists in the PMZ of Inconel-718 welding joint. The equiaxed grains remain in the PMZ of wrought joint, and the dendritic structure is still kept in the PMZ of as-cast and homogenization joint. The slender Laves and particle MC phase precipitate along the boundary of the austenite in PMZ of welding joint. But the segregated region originally existed in base metal disperses. The calculating results show that the maximum solidus-liquidus temperature range is in as-cast base metal, secondary in homogenization, minimum in wrought. The width of PMZ is increased with the increasing heat input and PMZ of as-cast is larger than PMZ of wrought and homogenization Inconel-718 superalloy.

Key wordsNi-based Inconel-718 superalloy    PMZ    segregation    liquid film    dendrite
收稿日期: 2013-11-21     
ZTFLH:  TG401  
作者简介: null

叶欣, 男, 1984年生, 博士生

图1  焊接接头示意图
图2  Inconel-718合金轧制态母材的微观组织
图3  Inconel-718合金轧制态接头的微观组织
图4  Inconel-718合金铸态母材的微观组织
图5  Inconel-718合金铸态接头的微观组织
图6  Inconel-718合金均匀化状态母材的微观组织
图7  Inconel-718合金均匀化接头的微观组织
Heat input / (kJ?cm-1) PMZ width /mm
Wrought As-cast Homogenization
2.4 0.218±0.022 0.335±0.022 0.247±0.028
3.6 0.292±0.019 0.426±0.028 0.339±0.016
4.8 0.401±0.013 0.541±0.015 0.423±0.031
表1  不同焊接线能量下3种状态的Inconel-718合金接头PMZ宽度
图8  Inconel-718合金相平衡分数图
图9  Inconel-718合金元素平衡相图
Type Zone Region Mass fraction /% Solidus Liquidus
Fe Nb K K
As-cast Base metal Laves 16.19 26.02 1391 1621
Segregated γ 17.30 8.17 1429 1586
Intradendriticγ 24.87 2.69 1553 1668
Homogenization Laves 12.12 27.62 1376 1635
Segregated γ 20.59 10.19 1423 1556
Intradendriticγ 25.21 4.87 1462 1631
As-cast PMZ Laves 21.54 26.30 1419 1625
Intradendriticγ 29.25 1.91 1593 1693
Homogenization Laves 21.50 24.86 1430 1600
Intradendriticγ 28.13 2.32 1572 1683
表2  Inconel-718合金铸态与均匀化的母材和PMZ区域元素含量与理论固液相线温度
Base metal Liquidus of austenite Solidus of low melting phase Temperature range
K K K
Wrought 1630 1451 179?
As-cast 1668 1391 277
Homogenization 1631 1376 255
表3  Inconel-718合金母材固液相线理论温度及其固液共存温度区间
[1] Antonsson T, Fredriksson H. Metall Mater Trans, 2005; 36B: 85
[2] Manikandan S G K, Sivakumar D, Rao K P, Kamaraj M. J Mater Process Technol, 2014; 214: 358
[3] El-Bagoury N, Omar A A, Ogi K. Metall Microstr Anal, 2012; 1: 35
[4] Moosavy H N, Aboutalebi M, Seyedein S, Goodarzi M, Mapelli C. Mater Sci Technol-Lond, 2013; 30: 339
[5] Moosavy H N, Aboutalebi M R, Seyedein S H, Goodarzi M, Khodabakhshi M, Mapelli C, Barella S. Opt Laser Technol, 2014; 57: 12
[6] Osoba L, Gao Z, Ojo O. J Metall Eng, 2013; 2: 88
[7] Idowu O A, Ojo O A, Chaturvedi M C. Mater Sci Eng, 2007; A454: 389
[8] Hong J K, Park J H, Park N K, Eom I S, Kim M B, Kang C Y. J Mater Process Technol, 2008; 201: 515
[9] Odabasi A, Unlu N, Goller G, Eruslu M N. Metall Mater Trans, 2010; 41A: 2357
[10] Huang X, Richards N L, Chaturvedi M C. Mater Manuf Process, 2004; 19: 285
[11] Cao X, Rivaux B, Jahazi M, Cuddy J, Birur A. J Mater Sci, 2009; 44: 4557
[12] Andersson J, Sjoberg G P, Viskari L, Chaturvedi M. Mater Sci Technol-Lond, 2012; 28: 609
[13] Andersson J, Sjoberg G P, Viskari L, Chaturvedi M. Mater Sci Technol-Lond, 2012; 28: 733
[14] Andersson J, Sjoberg G P, Viskari L, Chaturvedi M. Mater Sci Technol-Lond, 2013; 29: 43
[15] Saunders N, Fahrmann M, Small C J. In: Pollock T M, Kissinger R D, Bowman R D eds., Superalloys 2000, Champion: The Minerals, Metals and Materials Society, 2000: 803
[16] Tancret F. Comput Mater Sci, 2007; 41: 13
[17] Ojo O A, Tancret F. Comput Mater Sci, 2009; 45: 388
[18] Fu S H, Dong J X, Zhang M C, Xie X S. Mater Sci Eng, 2009; A499: 215
[19] Wang L, Li C Q, Dong J X, Zhang M C. Chem Eng Commun, 2009; 196: 754
[20] Wang L, Yijun Y, Dong J X, Zhang M C. Chem Eng Commun, 2010; 197: 1571
[21] Wang L, Gong H, Zhao H F, Dong J X, Zhang M C. China Foundry, 2012; 9: 263
[22] Wang L, Dong J X, Tian Y L, Zhang L. J Univ Sci Technol, 2008; 15B: 594
[23] Ojo O A. Mater Sci Technol-Lond, 2007; 23: 1149
[24] Chintababu U, Chary V R, Gupta S P. Can Metall Quarterly, 2007; 46: 175
[25] Valdes J R, Kim D E, Shang S L, Liu X B, King P, Liu Z K. In: Reed R C, Green K A, Caron P, Gabb T P, Fahrmann M G eds., Superalloys 2008, Woodard: Wiley, 2008: 333
[26] Mathon M, Connétable D, Sundman B, Lacaze J. Computer Coupling Phase Diagrams Thermochem, 2009; 33: 136
[27] Dupont J N, Lippold J C, Kiser S D. Welding Metallurgy and Weldability of Nickel-Base Alloys. Hoboken: Wiley, 2009: 69
[1] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[2] 常松涛, 张芳, 沙玉辉, 左良. 偏析干预下体心立方金属再结晶织构竞争[J]. 金属学报, 2023, 59(8): 1065-1074.
[3] 刘继浩, 周健, 武会宾, 马党参, 徐辉霞, 马志俊. 喷射成形M3高速钢偏析成因及凝固机理[J]. 金属学报, 2023, 59(5): 599-610.
[4] 张利民, 李宁, 朱龙飞, 殷鹏飞, 王建元, 吴宏景. 交流电脉冲对过共晶Al-Si合金中初生Si相偏析的作用机制[J]. 金属学报, 2023, 59(12): 1624-1632.
[5] 陈学双, 黄兴民, 刘俊杰, 吕超, 张娟. 一种含富锰偏析带的热轧临界退火中锰钢的组织调控及强化机制[J]. 金属学报, 2023, 59(11): 1448-1456.
[6] 郭东伟, 郭坤辉, 张福利, 张飞, 曹江海, 侯自兵. 基于二次枝晶间距变化特征的连铸方坯CET位置判断新方法[J]. 金属学报, 2022, 58(6): 827-836.
[7] 李亚敏, 张瑶瑶, 赵旺, 周生睿, 刘洪军. CuInconel 718合金Nb偏析影响机理的第一性原理研究[J]. 金属学报, 2022, 58(2): 241-249.
[8] 冯苗苗, 张红伟, 邵景霞, 李铁, 雷洪, 王强. 耦合热力学相变路径预测Fe-C包晶合金宏观偏析[J]. 金属学报, 2021, 57(8): 1057-1072.
[9] 郭中傲, 彭治强, 柳前, 侯自兵. 高碳钢连铸坯大区域C元素分布不均匀度[J]. 金属学报, 2021, 57(12): 1595-1606.
[10] 张壮, 李海洋, 周蕾, 刘华松, 唐海燕, 张家泉. 齿轮钢铸态点状偏析及其在热轧棒材中的演变[J]. 金属学报, 2021, 57(10): 1281-1290.
[11] 张勇, 李鑫旭, 韦康, 韦建环, 王涛, 贾崇林, 李钊, 马宗青. 三联熔炼GH4169合金大规格铸锭与棒材元素偏析行为[J]. 金属学报, 2020, 56(8): 1123-1132.
[12] 李师居, 李洋, 陈建强, 李中豪, 许光明, 李勇, 王昭东, 王国栋. 电磁振荡场作用下双辊铸轧制备2099Al-Li合金的偏析行为及组织性能[J]. 金属学报, 2020, 56(6): 831-839.
[13] 李根, 兰鹏, 张家泉. 基于Ce变质处理的TWIP钢凝固组织细化[J]. 金属学报, 2020, 56(5): 704-714.
[14] 刘杨,王磊,宋秀,梁涛沙. DD407/IN718高温合金异质焊接接头的组织及高温变形行为[J]. 金属学报, 2019, 55(9): 1221-1230.
[15] 吴春雷,李德伟,朱晓伟,王强. 电磁旋流水口连铸技术对小方坯凝固组织形貌和宏观偏析的影响[J]. 金属学报, 2019, 55(7): 875-884.